Question

Estimate the area of the region bounded between the curve f(x) = 1 x+1 and the...

Estimate the area of the region bounded between the curve f(x) = 1 x+1 and the horizontal axis over the interval [1, 5] using a right Riemann sum. Use n = 4 rectangles first, then repeat using n = 8 rectangles. The exact area under the curve over [1, 5] is ln(3) ≈ 1.0986. Which of your estimates is closer to the true value?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the function f(x) = x, estimate the area of the region between the graph and...
For the function f(x) = x, estimate the area of the region between the graph and the horizontal axis over the interval 0≤x≤4 using a . a. Riemann Left Sum with eight left rectangles. b. Riemann Right Sum with eight right rectangles. c. A good estimate of the area.
Estimate the area under the graph of f ( x ) = 1 x + 1...
Estimate the area under the graph of f ( x ) = 1 x + 1 over the interval [ 3 , 5 ] using two hundred approximating rectangles and right endpoints R n = Repeat the approximation using left endpoints L n =
Estimate the area under the graph of f(x)=1/(x+3) over the interval [−2,1] using ten approximating rectangles...
Estimate the area under the graph of f(x)=1/(x+3) over the interval [−2,1] using ten approximating rectangles and right endpoints. a=-2,b=1,n=10 Rn=? Repeat the approximation using left endpoints. Ln? Accurate to 4 places.
Consider the function f(x)=4x2-x3 provide the graph the region bounded by f(x) and the x-axis over...
Consider the function f(x)=4x2-x3 provide the graph the region bounded by f(x) and the x-axis over the interval [0,4], then estimate the area of this region using left reman sum with n=4, 10 and 20 subintervals. you may use the graphing calculator to facilitate the calculation of the Riemann sum. use four decimal places in all your calculations and answers.
30) Estimate the area under the graph of f(x)= 1/x+4 over the interval [1,3] using five...
30) Estimate the area under the graph of f(x)= 1/x+4 over the interval [1,3] using five approximating rectangles and right endpoints. Rn= Repeat the approximation using left endpoints. Ln=
Estimate the area under the graph of f(x)=1/(x+2) over the interval [0,3]using eight approximating rectangles and...
Estimate the area under the graph of f(x)=1/(x+2) over the interval [0,3]using eight approximating rectangles and right endpoints. Rn= Repeat the approximation using left endpoints. Ln=
Consider the region bounded by f(x) = x^3 + x + 3 and y = 0...
Consider the region bounded by f(x) = x^3 + x + 3 and y = 0 over [−1, 2]. a) Find the partition of the given interval into n subintervals of equal length. (Write ∆x, x0, x1, x2, · · · , xk, · · · , xn.) b) Find f(xk), and setup the Riemann sum ∑k=1 f(xk)∆x. c) Simplify the Riemann sum using the Power Sum Formulas. d) Find the area of the region by taking limit as n...
1) Using the right endpoint with n = 4, approximate the area of the region bounded...
1) Using the right endpoint with n = 4, approximate the area of the region bounded by ? = 2?2 + 3, and x axis for x between 1 and 3. 2) Use Riemann sums and the limit to find the area of the region bounded by ?(?) = 3? − 4 and x-axis between x = 0 and x = 1
Let R be the region bounded above by f(x) = 3 times the (sqr root of...
Let R be the region bounded above by f(x) = 3 times the (sqr root of x) and the x-axis between x = 4 and x = 16. Approximate the area of R using a midpoint Riemann sum with n = 6 subintervals. Sketch a graph of R and illustrate how you are approximating it’ area with rectangles. Round your answer to three decimal places.
Calculate the area, in square units, of the region bounded by the line x=2 on the...
Calculate the area, in square units, of the region bounded by the line x=2 on the left, the curve f(x)=ln(x-6)+1 on the right, the line y=3 above, and the x-axis below. Give an exact answer, in terms of e.