Question

Evaluate ∫c(1−xy/2)dS where C is the upper half of the circle centered at the origin with...

Evaluate ∫c(1−xy/2)dS where C is the upper half of the circle centered at the origin with radius 1 with the clockwise rotation followed by the line segment from (1,0)to (3,0) which in turn is followed by the lower half of the circle centerd at the origin of radius 3 with clockwise rotation.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 2. Let C be the circle of radius 100, centered at the origin and positively...
Problem 2. Let C be the circle of radius 100, centered at the origin and positively oriented. The goal of this problem is to compute Z C 1 z 2 − 3z + 2 dz. (i) Decompose 1 z 2−3z+2 into its partial fractions. (ii) Compute R C1 1 z−1 dz and R C2 1 z−2 dz, where C1 is the circle of radius 1/4, centered at 1 and positively oriented, and C2 is the circle of radius 1/4, centered...
Evaluate the line integral R C (x 2 + y 2 ) ds where C is...
Evaluate the line integral R C (x 2 + y 2 ) ds where C is the line segment from (1, 1) to (2, 5).
Evaluate the line integral ∫_c x^2 +y^2 ds where C is the line segment from (1,1)...
Evaluate the line integral ∫_c x^2 +y^2 ds where C is the line segment from (1,1) to (2,3).
Evaluate the line integral, where C is the given curve. ∫C xyz2 ds, C is the...
Evaluate the line integral, where C is the given curve. ∫C xyz2 ds, C is the line segment from (-1,3,0) to (1,4,3)
2. Use Green’s Theorem to evaluate R C F · Tds, where C is the square...
2. Use Green’s Theorem to evaluate R C F · Tds, where C is the square with vertices (0,0),(1,0),(1,1) and (0,1) in the xy plane, oriented counter-clockwise, and F(x,y) = hx 3 ,xyi. (Please give a numerical answer here.)
Describe the shape of the parametrically defined curve (eg, upper half of circle with radius =...
Describe the shape of the parametrically defined curve (eg, upper half of circle with radius = 3, centered at (1, -2) ) and sketch. x(t) = 5cos(t) + 5; y(t) = 5sin(t) – 2, -pi <= t <= pi.
a) Find the parametric equations for the circle centered at (1,0) of radius 2 generated clockwise...
a) Find the parametric equations for the circle centered at (1,0) of radius 2 generated clockwise starting from (1+21/2 , 21/2). <---( one plus square root 2, square root 2) b) When given x(t) = tcost, y(t) = sint, 0 <_ t. Find dy/dx as a function of t. c) When given the parametric equations x(t) = eatsin2*(pi)*t, y(t) = eatcos2*(pi)*t where a is a real number. Find the arc length as a function of a for 0 <_ t...
Let C be the circle with radius 1 and with center (−2,1), and let f(x,y) be...
Let C be the circle with radius 1 and with center (−2,1), and let f(x,y) be the square of the distance from the point (x,y) to the origin. Evaluate the integral ∫f(x,y)ds
Using MatLab 2. Given the parametric equations x = t^3 - 3t, y = t^2-3: (a)...
Using MatLab 2. Given the parametric equations x = t^3 - 3t, y = t^2-3: (a) Find the points where the tangent line is horizontal or vertical (indicate which in a text line) (b) Plot the curve parametrized by these equations to confirm. (c) Note that the curve crosses itself at the origin. Find the equation of both tangent lines. (d) Find the length of the loop in the graph and the area enclosed by the loop. 3. Use what...
1.) Let f(x,y) =x^2+y^3+sin(x^2+y^3). Determine the line integral of f(x,y) with respect to arc length over...
1.) Let f(x,y) =x^2+y^3+sin(x^2+y^3). Determine the line integral of f(x,y) with respect to arc length over the unit circle centered at the origin (0, 0). 2.) Let f ( x,y)=x^3+y+cos( x )+e^(x − y). Determine the line integral of f(x,y) with respect to arc length over the line segment from (-1, 0) to (1, -2)