Question

find y' for the function 1. (y-2)^7=3x^2+2x-2 2. 3y^3+2x^3=3 3.(4y^2+3)^4+3x^5-5=0 4. 4x^2+3x^2y^2-y^3=3x

find y' for the function

1. (y-2)^7=3x^2+2x-2

2. 3y^3+2x^3=3

3.(4y^2+3)^4+3x^5-5=0

4. 4x^2+3x^2y^2-y^3=3x

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Gaussian Elimination to solve and show all steps: 1. (x+4y=6) (1/2x+1/3y=1/2) 2. (x-2y+3z=7) (-3x+y+2z=-5) (2x+2y+z=3)
Use Gaussian Elimination to solve and show all steps: 1. (x+4y=6) (1/2x+1/3y=1/2) 2. (x-2y+3z=7) (-3x+y+2z=-5) (2x+2y+z=3)
Solve for the general solution x^4y''''+4x^3y'''+3x^2y''-xy'+y=0
Solve for the general solution x^4y''''+4x^3y'''+3x^2y''-xy'+y=0
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
solve the system of equations 1: y=3x^2-2x-1      2x+3y=2 2: x^2+(y-2)^2=4      x^2-2y=0
solve the system of equations 1: y=3x^2-2x-1      2x+3y=2 2: x^2+(y-2)^2=4      x^2-2y=0
Solve the system using 3x3 3x-2y+z=2 5x+y-2z=1 4x-3y+3z=7
Solve the system using 3x3 3x-2y+z=2 5x+y-2z=1 4x-3y+3z=7
Question : y'' = 4y' + 13y =0 , (y''+ 2y' + 2y)^2 = 0 ,...
Question : y'' = 4y' + 13y =0 , (y''+ 2y' + 2y)^2 = 0 , y'' - y' - 2y = cosx , y'' + 3y' + 2y = x^2 - e^2x
(x+1)y'=y-1 2) dx+(x/y+(e)?)dy=0 3)ty'+2y=sint 4) y"-4y=-3x²e3x 5) y"-y-2y=1/sinx 6)2x2y"+xy'-2y=0 ea)y=x' b) x=0 2dx/dt-2dy/dt-3x=t; 2
(x+1)y'=y-1 2) dx+(x/y+(e)?)dy=0 3)ty'+2y=sint 4) y"-4y=-3x²e3x 5) y"-y-2y=1/sinx 6)2x2y"+xy'-2y=0 ea)y=x' b) x=0 2dx/dt-2dy/dt-3x=t; 2
Consider the linearly independent set of vectors B= (-1+2x+3x^2+4x^3+5x^4, 1-2x+3x^2+4x^3+5x^4, 1+2x-3x^2+4x^3+5x^4, 1+2x+3x^2-4x^3+5x^4, 1+2x+3x^3+4x^3-5x^4) in P4(R), does...
Consider the linearly independent set of vectors B= (-1+2x+3x^2+4x^3+5x^4, 1-2x+3x^2+4x^3+5x^4, 1+2x-3x^2+4x^3+5x^4, 1+2x+3x^2-4x^3+5x^4, 1+2x+3x^3+4x^3-5x^4) in P4(R), does B form a basis for P4(R) and why?
Solve the system of linear equations: x-2y+3z=4 2x+y-4z=3 -3x+4y-z=-2 2. Determine whether the lines  x+y=1 and 5x+y=3...
Solve the system of linear equations: x-2y+3z=4 2x+y-4z=3 -3x+4y-z=-2 2. Determine whether the lines  x+y=1 and 5x+y=3 intersect. If they do, find points of intersection.
2y[n]-3y[n-1]+y[n-2]=4x[n]-3x[n-1]   y[-1]=0 y[-2]=1 Take the Z transform and then determine the output y[n] if x[n] =...
2y[n]-3y[n-1]+y[n-2]=4x[n]-3x[n-1]   y[-1]=0 y[-2]=1 Take the Z transform and then determine the output y[n] if x[n] = 4^(-n) u[n]