Question

y′′+3y′+2y=2e−tt with initial condition y(0)=1,y′(0)=2

y′′+3y′+2y=2e−tt with initial condition y(0)=1,y′(0)=2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
solve the eqution 2y"+3y'-1y=8x+2 and given the initial condition y(0)=0, (dy/dt at t=0)=2 find y(2)
solve the eqution 2y"+3y'-1y=8x+2 and given the initial condition y(0)=0, (dy/dt at t=0)=2 find y(2)
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
Laplace Transform of y"+3y'+2y=0 , y(2)=1 , y'(0)=0
Laplace Transform of y"+3y'+2y=0 , y(2)=1 , y'(0)=0
Solve the given initial-value problem. 2y'' + 3y' − 2y = 10x2 − 4x − 15,  y(0)...
Solve the given initial-value problem. 2y'' + 3y' − 2y = 10x2 − 4x − 15,  y(0) = 0, y'(0) = 0
find solution by undertermined method y'' + 3y' +2y =2e^-x
find solution by undertermined method y'' + 3y' +2y =2e^-x
Solve the IVP using the Eigenvalue method. x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 Solve...
Solve the IVP using the Eigenvalue method. x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1 Solve the IVP using the Eigenvalue method. x'=2x-3y+1 y'=x-2y+1 x(0)=0 y(0)=1
find the solution of the given initial value problem 1. y''+y'−2y=0, y(0) =1, y'(0) =1 2....
find the solution of the given initial value problem 1. y''+y'−2y=0, y(0) =1, y'(0) =1 2. 6y''−5y'+y=0, y(0) =4, y'(0) =0 3. y''+5y'+3y=0, y(0) =1, y'(0) =0 4. y''+8y'−9y=0, y(1) =1, y'(1) =0
y''-2y'-3y=15te^2t y(0)=2 y'(0)=0 find the solution
y''-2y'-3y=15te^2t y(0)=2 y'(0)=0 find the solution
Solve the initial value problem: y′′−2y′+11y=0y″−2y′+11y=0, y(0)=3y(0)=3, y′(0)=−3.y′(0)=−3.Give your answer as y=... y=... . Use xx...
Solve the initial value problem: y′′−2y′+11y=0y″−2y′+11y=0, y(0)=3y(0)=3, y′(0)=−3.y′(0)=−3.Give your answer as y=... y=... . Use xx as the independent variable.
Please solve the listed initial value problem: y'' + 3y' + 2y = 1 - u(t...
Please solve the listed initial value problem: y'' + 3y' + 2y = 1 - u(t - 10); y(0) = 0, y'(0) = 0
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT