Question

LINEAR ALGEBRA For the matrix B= 1 -4 7 -5 0 1 -4 3 2   ...

LINEAR ALGEBRA

For the matrix B=

1 -4 7 -5

0 1 -4 3

2    -6 6    -4

Find all x in R^4 that are mapped into the zero vector by the transformation Bx.

Does the vector:

1

0

2

belong to the range of T? If it does, what is the pre-image of this vector?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Linear Algebra Find the 2x2 matrix A of a linear transformation T: R^2->R^2 such that T(vi)...
Linear Algebra Find the 2x2 matrix A of a linear transformation T: R^2->R^2 such that T(vi) = wi for i = 1,2. v1=(4,3), v2=(5,4); w1=(-3,2), w2=(-3,-4)
(a) Prove that if two linear transformations T,U : V --> W have the same values...
(a) Prove that if two linear transformations T,U : V --> W have the same values on a basis for V, i.e., T(x) = U(x) for all x belong to beta , then T = U. Conclude that every linear transformation is uniquely determined by the images of basis vectors. (b) (7 points) Determine the linear transformation T : P1(R) --> P2(R) given by T (1 + x) = 1+x^2, T(1- x) = x by finding the image T(a+bx) of...
#2. For the matrix A =   1 2 1 2 3 7 4 7...
#2. For the matrix A =   1 2 1 2 3 7 4 7 9   find the following. (a) The null space N (A) and a basis for N (A). (b) The range space R(AT ) and a basis for R(AT ) . #3. Consider the vectors −→x =   k − 6 2k 1   and −→y =   2k 3 4  . Find the number k such that the vectors...
find a 4×4 matrix B such that the linear transformation x⇝Bx preserves distance but does not...
find a 4×4 matrix B such that the linear transformation x⇝Bx preserves distance but does not preserve orientation
Consider the matrix A= −2−2 6] [−2−3 5] [3 4−8] [−7−9 18 (all one matrix) (a)...
Consider the matrix A= −2−2 6] [−2−3 5] [3 4−8] [−7−9 18 (all one matrix) (a) How many rows ofAcontain a pivot position? (b) Do the columns ofAspanR4? (c) Does the equationA ~x=~b have a solution for every~b∈R^4? (d) Would the equation A~x=~0 have a nontrivial solution? (e) Are the columns of A linearly independent? (~x is vector x)
Find Eigenvalues and Eigenspaces for matrix: The 2 × 2 matrix AT associated to the linear...
Find Eigenvalues and Eigenspaces for matrix: The 2 × 2 matrix AT associated to the linear transformation T : R2 → R2 which rotates a vector π/4-radians then reflects it about the x-axis.
Linear algebra Find a transformation matrix A for P^2 -> P^3 then show its onto
Linear algebra Find a transformation matrix A for P^2 -> P^3 then show its onto
Matrix A= -2 1 0 2 -3 4 5 -6 7 vector u= 1 2 1...
Matrix A= -2 1 0 2 -3 4 5 -6 7 vector u= 1 2 1 a) Is the vector u in Null(A) Explain in detail why b) Is the vectro u in Col( A) Explain in detail why
Find the standard matrix for the following transformation T : R 4 → R 3 :...
Find the standard matrix for the following transformation T : R 4 → R 3 : T(x1, x2, x3, x4) = (x1 − x2 + x3 − 3x4, x1 − x2 + 2x3 + 4x4, 2x1 − 2x2 + x3 + 5x4) (a) Compute T(~e1), T(~e2), T(~e3), and T(~e4). (b) Find an equation in vector form for the set of vectors ~x ∈ R 4 such that T(~x) = (−1, −4, 1). (c) What is the range of T?
8. Consider a 4 × 2 matrix A and a 2 × 5 matrix B ....
8. Consider a 4 × 2 matrix A and a 2 × 5 matrix B . (a) What are the possible dimensions of the null space of AB? Justify your answer. (b) What are the possible dimensions of the range of AB Justify your answer. (c) Can the linear transformation define by A be one to one? Justify your answer. (d) Can the linear transformation define by B be onto? Justify your answer.