Question

17.)Find the curvature of r(t) at the point (1, 0, 0). r(t) = et cos(t), et...

17.)Find the curvature of r(t) at the point (1, 0, 0).

r(t) =

et cos(t), et sin(t), 3t

κ =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find an arc length parametrization of r(t) = (et sin(t), et cos(t), 10et )
Find an arc length parametrization of r(t) = (et sin(t), et cos(t), 10et )
Find the curvature of r(t) at the point (3, 1, 1). r(t) = <3t, t^2 ,...
Find the curvature of r(t) at the point (3, 1, 1). r(t) = <3t, t^2 , t^3> k=
Consider the following vector function. r(t) = 6t2, sin(t) − t cos(t), cos(t) + t sin(t)...
Consider the following vector function. r(t) = 6t2, sin(t) − t cos(t), cos(t) + t sin(t) ,    t > 0 (a) Find the unit tangent and unit normal vectors T(t) and N(t). T(t) = N(t) = (b) Use this formula to find the curvature. κ(t) =
Find the curvature of the curve r(t)= < et , t , t2 >.
Find the curvature of the curve r(t)= < et , t , t2 >.
Find the unit tangent vector T(t) and the curvature κ(t) for the curve r(t) = <6t^3...
Find the unit tangent vector T(t) and the curvature κ(t) for the curve r(t) = <6t^3 , t, −3t^2 >.
Given r(t) = (et cos(t) )i + (et sin(t) )j + 2k. Find (i) unit tangent...
Given r(t) = (et cos(t) )i + (et sin(t) )j + 2k. Find (i) unit tangent vector T. (ii) principal unit normal vector N.
1. (1 point) Calculate κ(t)κ(t) when r(t)=〈3t^(−1),5,1t〉 κ(t)= 2. (1 point) Find the arclength of the...
1. (1 point) Calculate κ(t)κ(t) when r(t)=〈3t^(−1),5,1t〉 κ(t)= 2. (1 point) Find the arclength of the curve r(t)=〈−3sint,6t,−3cost〉, −9≤t≤9
Find the derivative r '(t) of the vector function r(t). <t cos 3t , t2, t...
Find the derivative r '(t) of the vector function r(t). <t cos 3t , t2, t sin 3t>
1. (1 point) For the curve given by r(t)=〈−7t,−4t,1+7t2〉r(t)=〈−7t,−4t,1+7t2〉, Find the derivative r′(t)=〈r′(t)=〈, , , 〉...
1. (1 point) For the curve given by r(t)=〈−7t,−4t,1+7t2〉r(t)=〈−7t,−4t,1+7t2〉, Find the derivative r′(t)=〈r′(t)=〈, , , 〉 Find the second derivative r″(t)=〈r″(t)=〈 Find the curvature at t=1t=1 κ(1)=κ(1)= 2. (1 point) Find the distance from the point (-1, -5, 3) to the plane −4x+4y+0z=−3.
6) please show steps and explanation. a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation...
6) please show steps and explanation. a)Suppose r(t) = < cos(3t), sin(3t),4t >. Find the equation of the tangent line to r(t) at the point (-1, 0, 4pi). b) Find a vector orthogonal to the plane through the points P (1, 1, 1), Q(2, 0, 3), and R(1, 1, 2) and the area of the triangle PQR.