Question

Using cylindrical coordinates, find the volume above the ?? −plane and the cylinder ? 2 +...

Using cylindrical coordinates, find the volume above the ?? −plane and the cylinder ? 2 + ? 2 = 25 and below the plane ? + ? − 2? = 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using cylindrical coordinates, find the volume above the ??− plane and the cylinder ?2+?2=25 and below...
Using cylindrical coordinates, find the volume above the ??− plane and the cylinder ?2+?2=25 and below the plane ?+?−2?=1.
Use cylindrical coordinates to find the volume of the solid bounded above by: 3x2 + 3y2+...
Use cylindrical coordinates to find the volume of the solid bounded above by: 3x2 + 3y2+ z2 =45 and below by the xy plane.
Use cylindrical coordinates to find the volume of the region in the first octant bounded by...
Use cylindrical coordinates to find the volume of the region in the first octant bounded by a cylinder ?^2+ ?^2= 9 and a plane 2? + 3? + 4? = 12.
Use polar coordinates to find the volume of the solid below the paraboloid z=144−4x^2−4y^2 and above...
Use polar coordinates to find the volume of the solid below the paraboloid z=144−4x^2−4y^2 and above the xy-plane.
Write down a cylindrical coordinates integral that gives the volume of the solid bounded above by...
Write down a cylindrical coordinates integral that gives the volume of the solid bounded above by z = 50 − x^2 − y^2 and below by z = x^2 + y^2 . Evaluate the integral. (Hint: use the order of integration dz dr dθ.)
use polar coordinates to find volume of the given solid. below the paraboloid z=32-2x^2-2y^2 and above...
use polar coordinates to find volume of the given solid. below the paraboloid z=32-2x^2-2y^2 and above the xy-plane.
Find the volume of the solid which is bounded by the cylinder x^2 + y^2 =...
Find the volume of the solid which is bounded by the cylinder x^2 + y^2 = 4 and the planes z = 0 and z = 3 − y. Partial credit for the correct integral setup in cylindrical coordinates.
Use a triple integral in cylindrical coordinates to find the volume of the sphere x^2+ y^2+z^2=a^2
Use a triple integral in cylindrical coordinates to find the volume of the sphere x^2+ y^2+z^2=a^2
Use cylindrical coordinates to find the volume of the solid bounded by the graphs of  z  ...
Use cylindrical coordinates to find the volume of the solid bounded by the graphs of  z  =  68 − x^2 − y^2  and  z  =  4.
Use cylindrical coordinates. Find the volume of the solid that is enclosed by the cone z...
Use cylindrical coordinates. Find the volume of the solid that is enclosed by the cone z = x2 + y2 and the sphere x2 + y2 + z2 = 128.