Question

2) Find the function f if a) f '' (x) = 6 x + 12 x...

2) Find the function f if

a) f '' (x) = 6 x + 12 x 2

b) f ''' (t) = et

c) f ' (x) = 8 x 3 + 12 x + 3 , f(1) = 10

d) f'' (x) = 2 - 12 x , f(0) = 9 , f(2) = 15

e) f '' (t) = 2 et + 3 sin t , f(0) = 0 , f(π) = 0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the function F(x, y, z) =x2/2− y3/3 + z6/6 − 1. (a) Find the gradient...
Consider the function F(x, y, z) =x2/2− y3/3 + z6/6 − 1. (a) Find the gradient vector ∇F. (b) Find a scalar equation and a vector parametric form for the tangent plane to the surface F(x, y, z) = 0 at the point (1, −1, 1). (c) Let x = s + t, y = st and z = et^2 . Use the multivariable chain rule to find ∂F/∂s . Write your answer in terms of s and t.
13. Consider f(x)=sqrt x-2 a) Using any of the three limit formulas to find f ′...
13. Consider f(x)=sqrt x-2 a) Using any of the three limit formulas to find f ′ ( a ), what is the slope of the tangent line to f ( x )at x = 18? (6 points execution, 2 points notation) b) Find the equation of the tangent line at x = 18 14. State the derivative. a) d/ d x [ x ^n ] b) d /d x [ cos ⁡ x ] c) d /d x [ csc...
Consider the function f(x, y) = sin(2x − 2y) (a) Solve and find the gradient of...
Consider the function f(x, y) = sin(2x − 2y) (a) Solve and find the gradient of the function. (b) Find the directional derivative of the function at the point P(π/2,π/6) in the direction of the vector v = <sqrt(3), −1>   (c) Compute the unit vector in the direction of the steepest ascent at A (π/2,π/2)
1. Find the area between the curve f(x)=sin^3(x)cos^2(x) and y=0 from 0 ≤ x ≤ π...
1. Find the area between the curve f(x)=sin^3(x)cos^2(x) and y=0 from 0 ≤ x ≤ π 2. Find the surface area of the function f(x)=x^3/6 + 1/2x from 1≤ x ≤ 2 when rotated about the x-axis.
Q 1) Consider the following functions. f(x) = 2/x,  g(x) = 3x + 12 Find (f ∘...
Q 1) Consider the following functions. f(x) = 2/x,  g(x) = 3x + 12 Find (f ∘ g)(x). Find the domain of (f ∘ g)(x). (Enter your answer using interval notation.) Find (g ∘ f)(x). Find the domain of (g ∘ f)(x).  (Enter your answer using interval notation.) Find (f ∘ f)(x). Find the domain of (f ∘ f)(x).  (Enter your answer using interval notation.) Find (g ∘ g)(x). Find the domain of (g ∘ g)(x). (Enter your answer using interval notation.) Q...
1. a True or False? If ∫ [ f ( x ) ⋅ g ( x...
1. a True or False? If ∫ [ f ( x ) ⋅ g ( x ) ] d x = [ ∫ f ( x ) d x ] ⋅ [ ∫ g ( x ) d x ]. Justify your answer. B. Find ∫ 0 π 4 sec 2 ⁡ θ tan 2 ⁡ θ + 1 d θ C. Show that ∫ 0 π 2 sin 2 ⁡ x d x = ∫ 0 π 2 cos...
1. Find the area of the region bounded by the graph of the function f(x) =...
1. Find the area of the region bounded by the graph of the function f(x) = x4 − 2x2 + 8, the x-axis, and the lines x = a and x = b, where a < b and a and b are the x-coordinates of the relative maximum point and a relative minimum point of f, respectively. 2.Evaluate the definite integral. 26 2 2x + 1 dx 0 3. Find the area of the region under the graph of f...
1. The absolute maximum value of f(x) = x 3 − 3x 2 + 12 on...
1. The absolute maximum value of f(x) = x 3 − 3x 2 + 12 on the interval [−2, 4] occurs at x =? Show your work. 2.t. Let f(x) = sin x + cos2 x. Find the absolute maximum, and absolute minimum value of f on [0, π]. Show your work. Absolute maximum: Absolute minimum: 3.Let f(x) = x √ (x − 2). The critical numbers of f are_______. Show your work.
Find the value of C > 0 such that the function ?C sin2x, if0≤x≤π, f(x) =...
Find the value of C > 0 such that the function ?C sin2x, if0≤x≤π, f(x) = 0, otherwise is a probability density function. Hint: Remember that sin2 x = 12 (1 − cos 2x). 2. Suppose that a continuous random variable X has probability density function given by the above f(x), where C > 0 is the value you computed in the previous exercise. Compute E(X). Hint: Use integration by parts! 3. Compute E(cos(X)). Hint: Use integration by substitution!
1) Find the antiderivative if f′(x)=x^6−2x^−2+5 and f(1)=0 2)Find the position function if the velocity is...
1) Find the antiderivative if f′(x)=x^6−2x^−2+5 and f(1)=0 2)Find the position function if the velocity is v(t)=4sin(4t) and s(0)=0
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT