Question

1. What are the possible eigenvalues of a square matrix P which satisfies P^2=P?

1. What are the possible eigenvalues of a square matrix P which satisfies P^2=P?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the matrix A, find (if possible) a nonsingular matrix P such that P−1AP is diagonal....
For the matrix A, find (if possible) a nonsingular matrix P such that P−1AP is diagonal. (If not possible, enter IMPOSSIBLE.) A = 6 −3 −2 1 . Verify that P−1AP is a diagonal matrix with the eigenvalues on the main diagonal.
Let A be a square matrix with A^2 = A. Prove that A is diagonisable and...
Let A be a square matrix with A^2 = A. Prove that A is diagonisable and that 1 and 0 are the only 2 possible eigenvalues
Take a 2x2 matrix A which has eigenvalues 1 and -1. Determine if any of the...
Take a 2x2 matrix A which has eigenvalues 1 and -1. Determine if any of the following is true. (a) The matrix A2 is identity matrix. (b) The matrix A2 also has eigenvalues 1 and -1. Give reason(s) to support your answer. There will be no marks for yes or no as answer.
Q 1) (25 pts) A projection matrix (or a projector) is a matrix P for which...
Q 1) (25 pts) A projection matrix (or a projector) is a matrix P for which P^2 = P. a) (10 pts) Find the eigenvalues of a projector. Show details b) (10 pts) Show that if P is a projector, then (I – P) is also projector. Explain briefly. c) (5 pts) What assumption about matrix A should be made to run the power method?
Find Eigenvalues and Eigenspaces for matrix: The 2 × 2 matrix AT associated to the linear...
Find Eigenvalues and Eigenspaces for matrix: The 2 × 2 matrix AT associated to the linear transformation T : R2 → R2 which rotates a vector π/4-radians then reflects it about the x-axis.
Consider 3x3 matrix A with eigenvalues -1, 2, 3. Find the trace and determinant of A....
Consider 3x3 matrix A with eigenvalues -1, 2, 3. Find the trace and determinant of A. Then, find the eigenvalues of A3 and A-1.
A projection matrix (or a projector) is a matrix P for which P2 = P. a)...
A projection matrix (or a projector) is a matrix P for which P2 = P. a) (10 pts) Find the eigenvalues of a projector. Show details. b) (10 pts) Show that if P is a projector, then (I – P) is also projector. Explain briefly. c) (5 pts) What assumption about matrix A should be made to run the power method?
Suppose that a 4 × 4 matrix A has eigenvalues ?1 = 1, ?2 = ?...
Suppose that a 4 × 4 matrix A has eigenvalues ?1 = 1, ?2 = ? 2, ?3 = 4, and ?4 = ? 4. Use the following method to find det (A). If p(?) = det (?I ? A) = ?n + c1?n ? 1 + ? + cn So, on setting ? = 0, we obtain that det (? A) = cn or det (A) = (? 1)ncn det (A) =
Find all eigenvalues and eigenvectors for the 3x3 matrix A= 1 3 2 -1 2   1...
Find all eigenvalues and eigenvectors for the 3x3 matrix A= 1 3 2 -1 2   1 4 -1 -1
find all eigenvalues and eigenvectors of the given matrix A= [3 2 2 1 4 1...
find all eigenvalues and eigenvectors of the given matrix A= [3 2 2 1 4 1 -2 -4 -1]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT