Question

1) Solve the given differential equation by separation of variables. exy dy/dx = e−y + e−6x...

1) Solve the given differential equation by separation of variables.

exy dy/dx = ey + e−6xy

2) Solve the given differential equation by separation of variables.

y ln(x) dx/dy = (y+1/x)^2

3) Find an explicit solution of the given initial-value problem.

dx/dt = 7(x2 + 1),  x( π/4)= 1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the given system of differential equations by systematic elimination. 2 dx/dt − 6x + dy/dt...
Solve the given system of differential equations by systematic elimination. 2 dx/dt − 6x + dy/dt = e^t dx/dt − x + dy/dt = 6e^t
Consider the differential equation x2 dy + y ( x + y) dx = 0 with...
Consider the differential equation x2 dy + y ( x + y) dx = 0 with the initial condition y(1) = 1. (2a) Determine the type of the differential equation. Explain why? (2b) Find the particular solution of the initial value problem.
Use the Laplace transform to solve the given system of differential equations. 2 dx/dt + dy/dt...
Use the Laplace transform to solve the given system of differential equations. 2 dx/dt + dy/dt − 2x = 1 dx/dt + dy/dt − 6x − 6y = 2 x(0) = 0, y(0) = 0
Solve the given differential equation y-x(dy/dx)=3-2x2(dy/dx)
Solve the given differential equation y-x(dy/dx)=3-2x2(dy/dx)
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0...
Solve the Homogeneous differential equation (7 y^2 + 1 xy)dx - 1 x^2 dy = 0 (a) A one-parameter family of solution of the equation is y(x) = (b) The particular solution of the equation subject to the initial condition y(1) =1/7.
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a...
Consider the differential equation y′′+ 9y′= 0.( a) Let u=y′=dy/dt. Rewrite the differential equation as a first-order differential equation in terms of the variables u. Solve the first-order differential equation for u (using either separation of variables or an integrating factor) and integrate u to find y. (b) Write out the auxiliary equation for the differential equation and use the methods of Section 4.2/4.3 to find the general solution. (c) Find the solution to the initial value problem y′′+ 9y′=...
Solve the differential equation: dy/dx - y =e^x*y^2 (Using u=y^-1)
Solve the differential equation: dy/dx - y =e^x*y^2 (Using u=y^-1)
(a) State the interval on which the solution to the differential equation (x^2-1)dy/dx + ln(x+1)y =...
(a) State the interval on which the solution to the differential equation (x^2-1)dy/dx + ln(x+1)y = 4e^x with initial condition y(2) = 4 exists. Do not attempt to solve the equation. ODE SHOW ALL STEPS PLEASE.
differential equations solve (2xy+6x)dx+(x^2+4y^3)dy, y(0)=1
differential equations solve (2xy+6x)dx+(x^2+4y^3)dy, y(0)=1
find the solution of the first order differential equation (e^x+y + ye^y)dx +(xe^y - 1)dy =0...
find the solution of the first order differential equation (e^x+y + ye^y)dx +(xe^y - 1)dy =0 with initial value y(0)= -1