Question

Let A be a non-empty set and f: A ? A be a function. (a) Prove...

Let A be a non-empty set and f: A ? A be a function.

(a) Prove that, if f is injective but not surjective (which means that the set A is infinite), then f has at least two different left inverses.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A be a non-empty set. Prove that if ∼ defines an equivalence relation on the...
Let A be a non-empty set. Prove that if ∼ defines an equivalence relation on the set A, then the set of equivalence classes of ∼ form a partition of A.
Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is...
Let f:A→B and g:B→C be maps. Prove that if g◦f is a bijection, then f is injective and g is surjective.*You may not use, without proof, the result that if g◦f is surjective then g is surjective, and if g◦f is injective then f is injective. In fact, doing so would result in circular logic.
Let X be a non-empty finite set with |X| = n. Prove that the number of...
Let X be a non-empty finite set with |X| = n. Prove that the number of surjections from X to Y = {1, 2} is (2)^n− 2.
8.4: Let f : X → Y and g : Y→ Z be maps. Prove that...
8.4: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is surjective then g is surjective. 8.5: Let f : X → Y and g : Y→ Z be bijections. Prove that if composition g o f is bijective then f is bijective. 8.6: Let f : X → Y and g : Y→ Z be maps. Prove that if composition g o f is bijective then f is...
Let f : R − {−1} →R be defined by f(x)=2x/(x+1). (a)Prove that f is injective....
Let f : R − {−1} →R be defined by f(x)=2x/(x+1). (a)Prove that f is injective. (b)Show that f is not surjective.
Let f : A → B and g : B → C. For each statement below...
Let f : A → B and g : B → C. For each statement below either prove it or construct f, g, A, B, C which show that the statement is false. (a) If g ◦ f is surjective, then g is surjective. (b) If g ◦ f is surjective, then f is surjective. (c) If g ◦ f is injective, then f and g are injective
Let X, Y and Z be sets. Let f : X → Y and g :...
Let X, Y and Z be sets. Let f : X → Y and g : Y → Z functions. (a) (3 Pts.) Show that if g ◦ f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X → Y and g : Y → Z such that g ◦ f is injective but g is not injective. (c) (3 Pts.) Show that...
Let A be a finite set and f a function from A to A. Prove That...
Let A be a finite set and f a function from A to A. Prove That f is one-to-one if and only if f is onto.
Let f: Z -> Z be a function given by f(x) = ⌈x/2⌉ + 5. Prove...
Let f: Z -> Z be a function given by f(x) = ⌈x/2⌉ + 5. Prove that f is surjective (onto).
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected