Question

Group Theory Question: Show that if a finite group G with 6 elements is not abelian,...

Group Theory Question: Show that if a finite group G with 6 elements is not abelian, then it must be the group of symmetries of an equilateral triangle. Can one have a similar statement for a finite group G of eight elements?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
: (a) Let p be a prime, and let G be a finite Abelian group. Show...
: (a) Let p be a prime, and let G be a finite Abelian group. Show that Gp = {x ∈ G | |x| is a power of p} is a subgroup of G. (For the identity, remember that 1 = p 0 is a power of p.) (b) Let p1, . . . , pn be pair-wise distinct primes, and let G be an Abelian group. Show that Gp1 , . . . , Gpn form direct sum in...
(A) Show that if a2=e for all elements a in a group G, then G must...
(A) Show that if a2=e for all elements a in a group G, then G must be abelian. (B) Show that if G is a finite group of even order, then there is an a∈G such that a is not the identity and a2=e. (C) Find all the subgroups of Z3×Z3. Use this information to show that Z3×Z3 is not the same group as Z9. (Abstract Algebra)
Suppose that G is a finite Abelian group that has exactly one subroup for each divisor...
Suppose that G is a finite Abelian group that has exactly one subroup for each divisor of the order of G. Show that G is cyclic. provide explanation.
Demonstrate that the smallest non-abelian group has at least 5 elements. Can it have 6 elements,...
Demonstrate that the smallest non-abelian group has at least 5 elements. Can it have 6 elements, and if so, what is the 6th element?
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G...
Let G be a group (not necessarily an Abelian group) of order 425. Prove that G must have an element of order 5. Note, Sylow Theorem is above us so we can't use it. We're up to Finite Orders. Thank you.
Let G be the group of symmetries of an equilateral triangle. Recall that G has 6...
Let G be the group of symmetries of an equilateral triangle. Recall that G has 6 elements: the identity symmetry e, two nontrivial rotations, and three flips. Let r be be a rotation 120o counter-clockwise, so that the two nontrivial rotations in G are r and r2. To keep track of the flips, let A be the lower left vertex of the triangle, B the top vertex, and C the lower right vertex of the triangle; and write fa, fb,...
Let G be a finite group, and suppose that H is normal subgroup of G. Show...
Let G be a finite group, and suppose that H is normal subgroup of G. Show that, for every g ∈ G, the order of gH in G/H must divide the order of g in G. What is the order of the coset [4]42 + 〈[6]42〉 in Z42/〈[6]42〉? Find an example to show that the order of gH in G/H does not always determine the order of g in G. That is, find an example of a group G, and...
Let G be an abelian group and S ≤ G. Show that S ⊲ G and...
Let G be an abelian group and S ≤ G. Show that S ⊲ G and that G/S is abelian I need an explanation with some details
For an abelian group G, let tG = {x E G: x has finite order} denote...
For an abelian group G, let tG = {x E G: x has finite order} denote its torsion subgroup. Show that t defines a functor Ab -> Ab if one defines t(f) = f|tG (f restricted on tG) for every homomorphism f. If f is injective, then t(f) is injective. Give an example of a surjective homomorphism f for which t(f) is not surjective.
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)|...
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)| = p. (b) Suppose a /∈ Z(G). Show that |NG(a)| = p^2 . (c) Show that G has exactly p 2 +p−1 conjugacy classes (don’t forget to count the classes of the elements of Z(G)).