Question

Consider the sphere x^2 + y^2 + z^2 = 81 determine the double integral, in polar...

Consider the sphere x^2 + y^2 + z^2 = 81 determine the double integral, in polar coordinates, needed to calculate the volume of the sphere. Calculate the integral.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
To determine the surface area of the top part of the sphere x^2+y^2+z^2=4 that is inside...
To determine the surface area of the top part of the sphere x^2+y^2+z^2=4 that is inside the cylinder x^2+y^2=2y. first, setup the integral for this surface area in polar coordinates. second, Compute the integral. (be careful when you take the square root.)
Lets consider the solid bounded above a sphere x^2+y^2+z^2=2 and below by the paraboloid z=x^2+y^2. Express...
Lets consider the solid bounded above a sphere x^2+y^2+z^2=2 and below by the paraboloid z=x^2+y^2. Express the volume of the solid as a triple integral in cylindrical coordinates. (Please show all work clearly) Then evaluate the triple integral.
Use a triple integral in cylindrical coordinates to find the volume of the sphere x^2+ y^2+z^2=a^2
Use a triple integral in cylindrical coordinates to find the volume of the sphere x^2+ y^2+z^2=a^2
use a double integral in polar coordinates to find the volume of the solid in the...
use a double integral in polar coordinates to find the volume of the solid in the first octant enclosed by the ellipsoid 9x^2+9y^2+4z^2=36 and the planes x=sqrt3 y, x=0, z=0
Use a double integral in polar coordinates to find the volume of the solid bounded by...
Use a double integral in polar coordinates to find the volume of the solid bounded by the graphs of the equations. z = xy2,  x2 + y2 = 25,  x>0,  y>0,  z>0
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is...
2. Evaluate the double integral Z Z R e ^(x^ 2+y ^2) dA where R is the semicircular region bounded by x ≥ 0 and x^2 + y^2 ≤ 4. 3. Find the volume of the region that is bounded above by the sphere x^2 + y^2 + z^2 = 2 and below by the paraboloid z = x^2 + y^2 . 4. Evaluate the integral Z Z R (12x^ 2 )(y^3) dA, where R is the triangle with vertices...
Set up a double integral in rectangular coordinates for the volume bounded by the cylinders x^2+y^2=1...
Set up a double integral in rectangular coordinates for the volume bounded by the cylinders x^2+y^2=1 and y^2+z^x=1 and evaluate that double integral to find the volume.
Use a double integral to find the surface area of the part of the sphere x^2+y^2+z^2=a^2...
Use a double integral to find the surface area of the part of the sphere x^2+y^2+z^2=a^2 inside the circular cylinder x^2+y^2=b^2 wher 0<b<=a.
The domain E of R^3 located inside the sphere x^2 + y^2 + z^2 = 12...
The domain E of R^3 located inside the sphere x^2 + y^2 + z^2 = 12 and above half-cone z = sqrroot(( x^2 + y^2) / 3) (a) Represent the domain E. (b) Calculate the volume of solid E with a triple integral in Cartesian coordinates. (c) Recalculate the volume of solid E using the cylindrical coordinates.
Evaluate the following double integral by first converting to polar coordinates: SS(e^(x^2+y^2)dydx 0 ≤ x ≤...
Evaluate the following double integral by first converting to polar coordinates: SS(e^(x^2+y^2)dydx 0 ≤ x ≤ 2, -(sqrt(4-x^2)) ≤ t ≤ sqrt(4-x^2)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT