Question

Let V = R and F = Q (V is a F-vector space). Is the subset...

Let V = R and F = Q (V is a F-vector space). Is the subset S1 = {1, √ 2, √ 3} (of V ) linearly independent? Answer the same question for S2 = {1, √3 2, √3 4}.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be...
Let V be a vector space: d) Suppose that V is finite-dimensional, and let S be a set of inner products on V that is (when viewed as a subset of B(V)) linearly independent. Prove that S must be finite e) Exhibit an infinite linearly independent set of inner products on R(x), the vector space of all polynomials with real coefficients.
Let a ∈ R. Show that {e^ax, xe^ax} is a linearly independent subset of the vector...
Let a ∈ R. Show that {e^ax, xe^ax} is a linearly independent subset of the vector space C[0, 1]. Let a, b ∈ R be such that a≠b. Show that {e^ax, e^bx} is a linearly independent subset of the vector space C[0, 1].
Give an counter example or explain why those are false a) every linearly independent subset of...
Give an counter example or explain why those are false a) every linearly independent subset of a vector space V is a basis for V b) If S is a finite set of vectors of a vector space V and v ⊄span{S}, then S U{v} is linearly independent c) Given two sets of vectors S1 and S2, if span(S1) =Span(S2), then S1=S2 d) Every linearly dependent set contains the zero vector
Let T be a 1-1 linear transformation from a vector space V to a vector space...
Let T be a 1-1 linear transformation from a vector space V to a vector space W. If the vectors u, v and w are linearly independent in V, prove that T(u), T(v), T(w) are linearly independent in W
Suppose we have a vector space V of dimension n. Let R be a linearly independent...
Suppose we have a vector space V of dimension n. Let R be a linearly independent set with order n−2. Let S be a spanning set with order n+ 2. Outline a strategy to extend R to a basis for V. Outline a strategy to pare down S to a basis for V .
Definition. Let S ⊂ V be a subset of a vector space. The span of S,...
Definition. Let S ⊂ V be a subset of a vector space. The span of S, span(S), is the set of all finite linear combinations of vectors in S. In set notation, span(S) = {v ∈ V : there exist v1, . . . , vk ∈ S and a1, . . . , ak ∈ F such that v = a1v1 + . . . + akvk} . Note that this generalizes the notion of the span of a...
Let S={(0,1),(1,1),(3,-2)} ⊂ R², where R² is a real vector space with the usual vector addition...
Let S={(0,1),(1,1),(3,-2)} ⊂ R², where R² is a real vector space with the usual vector addition and scalar multiplication. (i) Show that S is a spanning set for R²​​​​​​​ (ii)Determine whether or not S is a linearly independent set
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
let T:V to W be a linear transdormation of vector space V and W and let...
let T:V to W be a linear transdormation of vector space V and W and let B=(v1,v2,...,vn) be a basis for V. Show that if (Tv1,Tv2,...,Tvn) is linearly independent, thenT is injecfive.
Let V be the vector space of 2 × 2 matrices over R, let <A, B>=...
Let V be the vector space of 2 × 2 matrices over R, let <A, B>= tr(ABT ) be an inner product on V , and let U ⊆ V be the subspace of symmetric 2 × 2 matrices. Compute the orthogonal projection of the matrix A = (1 2 3 4) on U, and compute the minimal distance between A and an element of U. Hint: Use the basis 1 0 0 0   0 0 0 1   0 1...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT