Question

Find all of the critical numbers for the function f(x) = 8 + 4x^3 − x^4...

Find all of the critical numbers for the function f(x) = 8 + 4x^3 − x^4 and classify each as either the location of a local maximum value, the location of a local minimum value or neither.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
f(x)=x^3-4x^2+5x-2 Find all critical numbers of the function, then use the second derivative test on each...
f(x)=x^3-4x^2+5x-2 Find all critical numbers of the function, then use the second derivative test on each critical number to determine if it is a local maximum or minimum. Show your work.
2. Consider the function f(x, y) = x 2 + cos(πy). (a) Find all the Critical...
2. Consider the function f(x, y) = x 2 + cos(πy). (a) Find all the Critical Points of f and (b) Classify them as local maximum/minimum or neither
Find all critical values for the following function. Use the first derivative test with a sign...
Find all critical values for the following function. Use the first derivative test with a sign diagram to classify each critical values as a local minimum, local maximum or neither. f(x) = 2x^3 + 18x^2 + 54^x + 7
Consider the function below. y=f(x)= x/x^2+x+1 Find all critical numbers of (f), if any. Find interval(s)...
Consider the function below. y=f(x)= x/x^2+x+1 Find all critical numbers of (f), if any. Find interval(s) on which f is decreasing Final all local maximum/minimum points of f.
Consider the function f(x) = (8x^3-4x)^3 (a) Find the derivative (b) Find critical numbers of f....
Consider the function f(x) = (8x^3-4x)^3 (a) Find the derivative (b) Find critical numbers of f. (Hint there are 5 critical numbers) Round your answers to three decimals. (c) Fill out the sign chart for the derivative below. Please label the axis as appropriate for your critical numbers. (d) What are the relative max(es) and min() of f?
Find the location of the critical point of the function f(x,y)= kx^(2)+3y^(2)-2xy-24y (in terms of k)...
Find the location of the critical point of the function f(x,y)= kx^(2)+3y^(2)-2xy-24y (in terms of k) of t. The classify the values of k for which the critical point is a: I) Saddle Point II) Local Minimum III) Local Maximum
For the function f(x) =x(x−4)^3 • Find all x-intercepts and find the y-intercept • Find all...
For the function f(x) =x(x−4)^3 • Find all x-intercepts and find the y-intercept • Find all critical numbers, • Determine where the function is increasing and where it is decreasing, • Find and classify the relative extrema, • Determine where the function is concave up and where it is concave down, • Find any inflection points, and Use this information to sketch the graph of the function. • Use this information to sketch the graph of the function.
Consider the function f(x)=x4 e-3xShow all work for the following problems. (5a) (3pts) Find all critical...
Consider the function f(x)=x4 e-3xShow all work for the following problems. (5a) (3pts) Find all critical numbers of f(x) (5b) (4pts) On what intervals is f(x) increasing/decreasing? (State the intervals clearly, and show associated mathematical work) (5c) (3pts) Find all local maximum and local minimum values of f(x)
Consider the function f(x) = x3 − 2x2 − 4x + 9 on the interval [−1,...
Consider the function f(x) = x3 − 2x2 − 4x + 9 on the interval [−1, 3]. Find f '(x). f '(x) = 3x2−4x−4 Find the critical values. x = Evaluate the function at critical values. (x, y) = (smaller x-value) (x, y) = (larger x-value) Evaluate the function at the endpoints of the given interval. (x, y) = (smaller x-value) (x, y) = (larger x-value) Find the absolute maxima and minima for f(x) on the interval [−1, 3]. absolute...
f(x)= x^4-2x^2-3. Using the first derivative test, find: a. All critical Numbers b. Intervals on which...
f(x)= x^4-2x^2-3. Using the first derivative test, find: a. All critical Numbers b. Intervals on which f(x) is increasing or decreasing c. location and value of all relative extrema