Question

If θ is in the interval [0, 2π) and cos(θ) = √ 2/2 , then θ...

If θ is in the interval [0, 2π) and cos(θ) = √ 2/2 , then θ must be π/4 .

State true or false.

Homework Answers

Answer #1

Hence given statement that theta must be π/4 is wrong, because there exists two solutions in the given interval.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Change from rectangular to spherical coordinates. (Let ρ ≥ 0, 0 ≤ θ ≤ 2π, and...
Change from rectangular to spherical coordinates. (Let ρ ≥ 0, 0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π.) (a) (0, −3, 0): (ρ, θ, ϕ) = (3, −π 2 ​, π 2) ​<---- (WRONG!!!!) (b) (−1, 1, − 2 ): (ρ, θ, ϕ) = (2, − π 4 ​, π 4) <------ ​(WRONG!!!!)
Find the dimension of the subspace U = span {1,sin^2(θ), cos 2θ} of F[0, 2π]
Find the dimension of the subspace U = span {1,sin^2(θ), cos 2θ} of F[0, 2π]
a. r=3 - 3cos(Θ), enter value for r on a table when; Θ=0, (π/3),(π/2),(2π/3),π,(4π/3),(3π/2),(5π/3) & 2π...
a. r=3 - 3cos(Θ), enter value for r on a table when; Θ=0, (π/3),(π/2),(2π/3),π,(4π/3),(3π/2),(5π/3) & 2π b. plot points from a, sketch graph c. use calculus to find slope at (π/2),(2π/3),(5π/3) & 2π d. find EXACT area inside the curve in 1st quadrant
Let Θ ∼ Unif.([0, 2π]) and consider X = cos(Θ) and Y = sin(Θ). Can you...
Let Θ ∼ Unif.([0, 2π]) and consider X = cos(Θ) and Y = sin(Θ). Can you find E[X], E[Y], and E[XY]? clearly, x and y are not independent I think E[X] = E[Y] = 0 but how do you find E[XY]?
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin...
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin θ sin φ, z = cos φ where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. Hint: Find an equation of the form F(x, y, z) = 0 for this surface by eliminating θ and φ from the equations above. (b) Calculate a parametrization for the tangent plane to the surface at (θ, φ) = (π/3, π/4).
1. Sketch the polar function r = (θ − π/4)(θ − 3π/4) on the interval 0...
1. Sketch the polar function r = (θ − π/4)(θ − 3π/4) on the interval 0 ≤ θ ≤ 2π. Then find all lines tangent to this polar function at the point (0, 0). 2. Find the area of the region enclosed by one loop of the curve r = 5 sin(4θ). 3. Use the Monotone Sequence Theorem to determine that the following sequence converges: an = 1/ 2n+3 .
Change from rectangular to spherical coordinates. (Let ρ ≥ 0, 0 ≤ θ ≤ 2π, and...
Change from rectangular to spherical coordinates. (Let ρ ≥ 0, 0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π.) (a) (0, −3, 0) (b) (−1, 1, − sqrt 2 )
Write the following numbers in the polar form re^iθ, 0≤θ<2π a) 7−7i r =......8.98............. , θ...
Write the following numbers in the polar form re^iθ, 0≤θ<2π a) 7−7i r =......8.98............. , θ =.........?.................. Write each of the given numbers in the polar form re^iθ, −π<θ≤π a) (2+2i) / (-sqrt(3)+i) r =......sqrt(2)........, θ = .........?..................., .
Evaluate, in spherical coordinates, the triple integral of f(ρ,θ,ϕ)=cosϕ, over the region 0≤θ≤2π, π/6≤ϕ≤π/2, 3≤ρ≤8. integral...
Evaluate, in spherical coordinates, the triple integral of f(ρ,θ,ϕ)=cosϕ, over the region 0≤θ≤2π, π/6≤ϕ≤π/2, 3≤ρ≤8. integral =
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))2 (a) Find...
Consider the function on the interval (0, 2π). f(x) = sin(x)/ 2 + (cos(x))2 (a) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation.) increasing     decreasing     (b) Apply the First Derivative Test to identify the relative extrema. relative maximum     (x, y) =    relative minimum (x, y) =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT