Question

Determine whether the Mean Value Theorem applies to f(x) = cos(3x) on [− π 2 ,...

Determine whether the Mean Value Theorem applies to f(x) = cos(3x) on [− π 2 , π 2 ]. Explain your answer. If it does apply, find a value x = c in (− π 2 , π 2 ) such that f 0 (c) is equal to the slope of the secant line between (− π 2 , f(− π 2 )) and ( π 2 , f( π 2 )) .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Explain why the mean value theorem applies to f(x)=3x^2 defined on [-2,1]. Find c that satisfies...
Explain why the mean value theorem applies to f(x)=3x^2 defined on [-2,1]. Find c that satisfies the conclusion of the theorem.
Find the maximum value of the directional derivative of the function f(x,y)=cos(3x+2y) at the point (π/6,−π/8)....
Find the maximum value of the directional derivative of the function f(x,y)=cos(3x+2y) at the point (π/6,−π/8). Give an exact answer.
Determine whether the Mean Value theorem can be applied to f on the closed interval [a,...
Determine whether the Mean Value theorem can be applied to f on the closed interval [a, b]. (Select all that apply.) f (x) = x7, [0,1] Yes, the Mean Value Theorem can be applied. No, f is not continuous on [a, b]. No, f is not differentiable on (a, b). None of the above. If the Mean Value Theorem can be applied, find all values of c in the open interval (a, b) such that f ‘(c) = f (b)...
Determine whether Rolle's Theorem can be applied to f on the closed interval [a, b]. (Select...
Determine whether Rolle's Theorem can be applied to f on the closed interval [a, b]. (Select all that apply.) f(x) = cos x,    [π, 3π] Yes. No, because f is not continuous on the closed interval [a, b]. No, because f is not differentiable in the open interval (a, b). No, because f(a) ≠ f(b). If Rolle's Theorem can be applied, find all values of c in the open interval (a, b) such that f '(c) = 0. (Enter your answers...
a.) Can the mean value theorem be used on f(x)= 3x^2 - 6x +2 on [-5,...
a.) Can the mean value theorem be used on f(x)= 3x^2 - 6x +2 on [-5, 7]? If so find c such that f ' (c)= [f(b)- f(a)]/ (b-a)
Determine whether the Mean Value theorem can be applied to f on the closed interval [a,...
Determine whether the Mean Value theorem can be applied to f on the closed interval [a, b]. (Select all that apply.) f(x) = 8 − x ,    [−17, 8] Yes, the Mean Value Theorem can be applied. No, because f is not continuous on the closed interval [a, b]. No, because f is not differentiable in the open interval (a, b). None of the above. If the Mean Value Theorem can be applied, find all values of c in the open...
1. Determine all value(s) of  x=c guaranteed to exist by the Mean Value Theorem for the function  f(x)=x3+8x2−6x+...
1. Determine all value(s) of  x=c guaranteed to exist by the Mean Value Theorem for the function  f(x)=x3+8x2−6x+ 27 restricted to the closed interval [−2,1] 2. Explain what your answer found in part a means using the words "secant" and "tangent"
To illustrate the Mean Value Theorem with a specific function, let's consider f(x) = x^3 −...
To illustrate the Mean Value Theorem with a specific function, let's consider f(x) = x^3 − x, a = 0, b = 5. Since f is a polynomial, it is continuous and differentiable for all x, so it is certainly continuous on [0, 5] and differentiable on (0, 5). Therefore, by the Mean Value Theorem, there is a number c in (0, 5) such that f(5) − f(0) = f '(c)(5 − 0). Now f(5) = ______ , f(0) =...
Let f(x) = x^3 - x a) Find the equation of the secant line through (0,f(0))...
Let f(x) = x^3 - x a) Find the equation of the secant line through (0,f(0)) and (2,f(2)) b) State the Mean-Value Theorem and show that there is only one number c in the interval that satisfies the conclusion of the Mean-Value Theorem for the secant line in part a c) Find the equation of the tangent line to the graph of f at point (c,f(c)). d) Graph the secant line in part (a) and the tangent line in part...
# 12 In Exercises 9–12, determine whether Rolle’s Theorem can be applied to f on the...
# 12 In Exercises 9–12, determine whether Rolle’s Theorem can be applied to f on the closed interval [a, b]. If Rolle’s Theorem can be applied, find all values of c in the open interval (a, b) such that f ′(c) = 0. If Rolle’s Theorem cannot be applied, explain why not. 12. f (x) = sin 2x, [−π, π]