Question

f(x)=5x^(2/3)-2x^(5/3) a. Give the domain of f b. Find the critical numbers of f c. Create...

f(x)=5x^(2/3)-2x^(5/3)

a. Give the domain of f

b. Find the critical numbers of f

c. Create a number line to determine the intervals on which f is increasing and decreasing.

d. Use the First Derivative Test to determine whether each critical point corresponds to a relative maximum, minimum, or neither.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
f(x)= x^4-2x^2-3. Using the first derivative test, find: a. All critical Numbers b. Intervals on which...
f(x)= x^4-2x^2-3. Using the first derivative test, find: a. All critical Numbers b. Intervals on which f(x) is increasing or decreasing c. location and value of all relative extrema
f(x)=x^3-4x^2+5x-2 Find all critical numbers of the function, then use the second derivative test on each...
f(x)=x^3-4x^2+5x-2 Find all critical numbers of the function, then use the second derivative test on each critical number to determine if it is a local maximum or minimum. Show your work.
what does a derivative tell us? F(x)=2x^2-5x-3, [-3,-1] F(x)=x^2+2x-1, [0,1] Give the intervals where the function...
what does a derivative tell us? F(x)=2x^2-5x-3, [-3,-1] F(x)=x^2+2x-1, [0,1] Give the intervals where the function is increasing or decreasing? Identify the local maxima and minima Identify concavity and inflection points
Givenf(x)=x3−6x2+15 (a) Find the critical numbers of f. (b) Find the open intervals on which the...
Givenf(x)=x3−6x2+15 (a) Find the critical numbers of f. (b) Find the open intervals on which the function is increasing or decreasing. (c) Apply the First Derivative Test to identify all relative extrema (that is, all relative minimums and maximums).
For the questions below, consider the following function. f (x) = 3x^4 - 8x^3 + 6x^2...
For the questions below, consider the following function. f (x) = 3x^4 - 8x^3 + 6x^2 (a) Find the critical point(s) of f. (b) Determine the intervals on which f is increasing or decreasing. (c) Determine the intervals on which f is concave up or concave down. (d) Determine whether each critical point is a local maximum, a local minimum, or neither.
consider the funtion f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) Find the domain of f. (write...
consider the funtion f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) Find the domain of f. (write in interval notation): Df:=_____________? b) Find the x- and y- intercepts. if any. (write your answers as ordered pairs). c) Find the asymptotes of f, if any. If there are not, write why. (write answers as equations). d) Find all of the critical numbers of f. on what intervals is f increasing/decreasing? show all work
The function f(x) = x^3 − 6x^2 − 15x + 1 has critical values x =...
The function f(x) = x^3 − 6x^2 − 15x + 1 has critical values x = −1 and x = 5. Use calculus to determine whether each of the critical values corresponds to a relative maximum, minimum or neither.
Consider the function f(x) = x^2/x-1 with f ' (x) = x^2-2x/ (x - 1)^2 and...
Consider the function f(x) = x^2/x-1 with f ' (x) = x^2-2x/ (x - 1)^2 and f '' (x) = 2 / (x - 1)^3 are given. Use these to answer the following questions. (a) [5 marks] Find all critical points and determine the intervals where f(x) is increasing and where it is decreasing, use the First Derivative Test to fifind local extreme value if any exists. (b) Determine the intervals where f(x) is concave upward and where it is...
Find the absolute maximum and minimum of f(x,y)=5x+5y with the domain x^2+y^2 less than or equal...
Find the absolute maximum and minimum of f(x,y)=5x+5y with the domain x^2+y^2 less than or equal to 2^2 Suppose that f(x,y) = x^2−xy+y^2−2x+2y with D={(x,y)∣0≤y≤x≤2} The critical point of f(x,y)restricted to the boundary of D, not at a corner point, is at (a,b)(. Then a= and b=     Absolute minimum of f(x,y) is      and absolute maximum is     .
Examine the function f(x, y) = 2x 2 + 2xy + y 2 + 2x −...
Examine the function f(x, y) = 2x 2 + 2xy + y 2 + 2x − 3 for relative extrema. Use the Second Partials Test to determine whether there is a relative maximum, relative minimum, a saddle point, or insufficient information to determine the nature of the function f(x, y) at the critical point (x0, y0), such that fxx(x0, y0) = −3, fyy(x0, y0) = −8, fxy(x0, y0) = 2.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT