Question

A tank initially contains salt in the pores of inert materials and 10 gallons of fresh...

A tank initially contains salt in the pores of inert materials and 10 gallons of fresh water. The salt dissolved at a rate per minute of 2 times the difference between 3 lb/gal and the concentration of the brine. Two gal of fresh water enters the tanks per minute. How much salt will be dissolved in the first 10 min? in the second 10 min? Ans.: 40 lb, 32 lb.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tank initially holds 100 gal of brine solution. At t = 0, fresh water is...
A tank initially holds 100 gal of brine solution. At t = 0, fresh water is poured into the tank at the rate of 5 gal/min, while the well-stirred mixture leaves the tank at the same rate. After 20 min, the tank contains 20/e lb of salt. Find the initial concentration of the brine solution inside the tank. Ans.: 0.20 lb/gal
A 110 gallon tank initially contains 5 lbs salt dissolved in 60 gallons of water. Brine...
A 110 gallon tank initially contains 5 lbs salt dissolved in 60 gallons of water. Brine containing 1 lb salt per gallon begins to flow into the tank at the rate of 3 gal/min and the well-mixed solution is drawn off at the rate of 1 gal/min. How much salt is in the tank when it is about to overflow? (Round your answer to the nearest integer.)
A tank contains 40 lb of salt dissolved in 400 gallons of water. A brine solution...
A tank contains 40 lb of salt dissolved in 400 gallons of water. A brine solution is pumped into the tank at a rate of 4 gal/min; it mixes with the solution there, and then the mixture is pumped out at a rate of 4 gal/min. Determine A(t), the amount of salt in the tank at time t, if the concentration of salt in the inflow is variable and given by cin(t) = 2 + sin(t/4) lb/gal.
A tank contains 70 lb of salt dissolved in 200 gallons of water. A brine solution...
A tank contains 70 lb of salt dissolved in 200 gallons of water. A brine solution is pumped into the tank at a rate of 2 gal/min; it mixes with the solution there, and then the mixture is pumped out at a rate of 2 gal/min. Determine A(t), the amount of salt in the tank at time t, if the concentration of salt in the inflow is variable and given by cin(t) = 2 + sin(t/4) lb/gal.
A 50-gallon tank initially contains 10 gallons of fresh water. At t = 0, a brine...
A 50-gallon tank initially contains 10 gallons of fresh water. At t = 0, a brine solution containing 2 pounds of salt per gallon is poured into the tank at a rate of 5 gal/min. The well-stirred mixture drains from the tank at a rate of 3 gal/min. Find the amount of salt in the tank at the moment of overflow. Please use differential equations to solve this problem and please put the answer in decimal form. I did this...
A tank initially contains 150 gal of brine in which 60 lb of salt are dissolved....
A tank initially contains 150 gal of brine in which 60 lb of salt are dissolved. A brine containing 4 ​lb/gal of salt runs into the tank at the rate of 6 ​gal/min. The mixture is kept uniform by stirring and flows out of the tank at the rate of 5 ​gal/min. Let y represent the amount of salt at time t. Complete parts a through f. a. At what rate​ (pounds per​ minute) does salt enter the tank at...
A large tank holds 300 gallons of a brine solution. Salt was entering and leaving the...
A large tank holds 300 gallons of a brine solution. Salt was entering and leaving the tank; a brine solutions was being pumped into the tank at the rate of 3 gal/min; it mixed with the solution there, and the mixture was then pumped out at a rate of 2 gal/min so the liquid is accumulating at a rate of 1gal/min. The concentration of salt in the inflow was 2 lb/gal  salt was entering at the rate of (2 lb/gal) ....
3. A tank initially contains a solution of 10 lbs of salt dissolved in 60 gallons...
3. A tank initially contains a solution of 10 lbs of salt dissolved in 60 gallons of water. At time t(0) = 0, water that contains 1/2 lb of salt per gallon is added tot he tank at a rate of 6 gal/min, and the resulting solution leaves the tank at the same rate. (Trench: Sec 4.3, 9) (a) What is the initial condition for the IVP? (b) Write a differential equation to describe the rate of change dQ/dt in...
A tank initially contains 50 gal of pure water. Brine containing 4 lb of salt per...
A tank initially contains 50 gal of pure water. Brine containing 4 lb of salt per gallon enters the tank at 2 ​gal/min, and the​ (perfectly mixed) solution leaves the tank at 3 ​gal/min. Thus, the tank is empty after exactly 50 min. ​(a) Find the amount of salt in the tank after t minutes. ​(b) What is the maximum amount of salt ever in the​ tank?
A tank contains 100 gallons of pure water. A salt solution with concentration 2.5 lb/gal enters...
A tank contains 100 gallons of pure water. A salt solution with concentration 2.5 lb/gal enters the tank at a rate of 4 gal/min. Solution drains from the tank at a rate of 4 gal/min. Find the eventual concentration of the salt solution using a qualitative analysis rather than by actually solving the DE.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT