Question

Find the inverse Laplace transform of (2s+9)/(s^2+19s) where s>0 y(t)=

Find the inverse Laplace transform of

(2s+9)/(s^2+19s) where s>0

y(t)=

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find Inverse Laplace Transform 2s/(s-1)^2 (s+1)
Find Inverse Laplace Transform 2s/(s-1)^2 (s+1)
1. Find the Laplace transform of a.) f(t)=u(t−4)⋅e^t F(s)= 2. Find the inverse Laplace transform of...
1. Find the Laplace transform of a.) f(t)=u(t−4)⋅e^t F(s)= 2. Find the inverse Laplace transform of a.) F(s)=2e^(−3s)−e^(−2s)−3e^(−6s)−e^(−9s)/s f(t) = b.) F(s)=e^(−6s)/s^2−3s−10 f(t) = c.) F(s)=4e^(−9s)/s^2+16 f(t) =
find laplace transform of f(t) =t^2(sin3t) find inverse laplace transform f(s) = 2-2e^-s/s^2
find laplace transform of f(t) =t^2(sin3t) find inverse laplace transform f(s) = 2-2e^-s/s^2
Find the Inverse Laplace Transform of the following functions (a) F(s) =4/s(s2+2s+2) (b) F(s) =8/s2(s2+2)
Find the Inverse Laplace Transform of the following functions (a) F(s) =4/s(s2+2s+2) (b) F(s) =8/s2(s2+2)
Y(s)= 5s2+8s+5 /s2/(s2 +2s+5) Find y(t)=? using partial fractions and laplace transform
Y(s)= 5s2+8s+5 /s2/(s2 +2s+5) Find y(t)=? using partial fractions and laplace transform
Given the second order initial value problem y′′−3y′=12δ(t−2),  y(0)=0,  y′(0)=3y″−3y′=12δ(t−2),  y(0)=0,  y′(0)=3Let Y(s)Y(s) denote the Laplace transform of yy. Then...
Given the second order initial value problem y′′−3y′=12δ(t−2),  y(0)=0,  y′(0)=3y″−3y′=12δ(t−2),  y(0)=0,  y′(0)=3Let Y(s)Y(s) denote the Laplace transform of yy. Then Y(s)=Y(s)=  . Taking the inverse Laplace transform we obtain y(t)=
Use partial fraction decomposition to find the inverse Laplace transform of the given function. (a) Y...
Use partial fraction decomposition to find the inverse Laplace transform of the given function. (a) Y (s) = 2 /(s 2+3s−4) (b) Y (s) = 1−2s /(s 2+4s+5) differential eq
Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where...
Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where S is a periodic function defined by S(t)={1,0≤t<1 0, 1≤t<2, and S(t+2)=S(t) for all t≥0. Hint: : Use the formula for the Laplace transform of a periodic function. Y(s)=
Given the second order initial value problem y′′+25y=5δ(t−1),  y(0)=2,  y′(0)=−10y″+25y=5δ(t−1),  y(0)=2,  y′(0)=−10Let Y(s)Y(s) denote the Laplace transform of yy. Then...
Given the second order initial value problem y′′+25y=5δ(t−1),  y(0)=2,  y′(0)=−10y″+25y=5δ(t−1),  y(0)=2,  y′(0)=−10Let Y(s)Y(s) denote the Laplace transform of yy. Then Y(s)=Y(s)=  . Taking the inverse Laplace transform we obtain y(t)=
Given the second order initial value problem y′′+y′−6y=5δ(t−2),  y(0)=−5,  y′(0)=5 Y(s) denote the Laplace transform of y. Then...
Given the second order initial value problem y′′+y′−6y=5δ(t−2),  y(0)=−5,  y′(0)=5 Y(s) denote the Laplace transform of y. Then Y(s)= Taking the inverse Laplace transform we obtain y(t)= y(t)=