Question

A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity...

A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity v(0) = i - j + k. Its acceleration is a(t) = 4t i + 4t j + k.

Find its velocity, v(t), and position, r(t), at time t.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle starts at the origin with initial velocity ⃗v(0) = ⃗i − ⃗j + ⃗k....
A particle starts at the origin with initial velocity ⃗v(0) = ⃗i − ⃗j + ⃗k. Its acceleration is ⃗a(t) = 4t⃗i + 3t⃗j − ⃗k. Find its position at t = 3.
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position...
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position vectors. a(t)  =  5 i  +  9t k,    v(0)  =  3 i  −  j,    r(0)  =  j  +  6 k (a) Find the velocity of the particle at time t. (b) Find the position of the particle at time t.
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = 2 i + 6t j + 12t2 k, v(0) = i, r(0) = 3 j − 6 k
Find the position vector of a particle that has acceleration 2i+4tj+3t^2k, initial velocity v(0)=j+k and initial...
Find the position vector of a particle that has acceleration 2i+4tj+3t^2k, initial velocity v(0)=j+k and initial position r(0)=j+k
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = (6t + et) i + 12t2 j, v(0) = 3i, r(0) = 7 i − 3 j v(t)= r(t)=
Find the velocity and position vectors of a particle that has the given acceleration and the...
Find the velocity and position vectors of a particle that has the given acceleration and the given initial velocity and position. a(t) = 4t, et, e−t   v(0) = 0,0,−5  r(0) = 0,1, 4
The position of a particle for t > 0 is given by →r (t) = (3.0t...
The position of a particle for t > 0 is given by →r (t) = (3.0t 2 i ^ − 7.0t 3 j ^ − 5.0t −2 k ^ ) m. (a) What is the velocity as a function of time? (b) What is the acceleration as a function of time? (c) What is the particle’s velocity at t = 2.0 s? (d) What is its speed at t = 1.0 s and t = 3.0 s? (e) What is...
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at...
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at time t=0 are v(0)=0 and S(0)=2. 1. Find a formula for the velocity v(t) at time t. 2. Find a formula for the position S(t) at time t. 3. Find the total distance traveled by the particle on the interval [0,3].
Given that the acceleration vector is a(t)=(-9 cos(3t))i+(-9 sin(3t))j+(-5t)k, the initial velocity is v(0)=i+k, and the...
Given that the acceleration vector is a(t)=(-9 cos(3t))i+(-9 sin(3t))j+(-5t)k, the initial velocity is v(0)=i+k, and the initial position vector is r(0)=i+j+k, compute: A. The velocity vector v(t) B. The position vector r(t)
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position,...
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position, the maximum value, at t = 0, moving to the right. The amplitude of the motion is 2.00 cm and the frequency is 1.50 Hz. (a) Find an expression for the position of the particle as a function of time. Determine (b) the maximum speed of the particle and (c) the earliest time (t > 0) at which the particle has this speed. Find...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT