Question

if g(x,y)= (x^2)+(3y^2)-2x a) what is the only critical point b) at the critical point, does...

if g(x,y)= (x^2)+(3y^2)-2x

a) what is the only critical point

b) at the critical point, does g have a local minimum, local maximum, or a saddle point?


Homework Answers

Answer #1

For critical points we set g_x=0 and g_y=0

=> 2x-2=0 and 6y=0

=> 2x=2 and y=0

=> x=1 and y=0

The critical point is (1,0)

;    ;

for second derivative test

As D(1,0) >0 and g_xx(1,0)>0 then we have local minimum at (1,0)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the location of the critical point of the function f(x,y)= kx^(2)+3y^(2)-2xy-24y (in terms of k)...
Find the location of the critical point of the function f(x,y)= kx^(2)+3y^(2)-2xy-24y (in terms of k) of t. The classify the values of k for which the critical point is a: I) Saddle Point II) Local Minimum III) Local Maximum
(5) Let f(x, y) = −x^2 + 2x − 3y^3 + 6y^2 − 3y. (a) Find...
(5) Let f(x, y) = −x^2 + 2x − 3y^3 + 6y^2 − 3y. (a) Find both critical points of f(x, y). (b) Compute the Hessian of f(x, y). (c) Decide whether the critical points are saddle-points, local minimums, or local maximums.
Find the critical point of the function g(x)=ln(x^(2)+2x+3). Then determine whether the critical point is a...
Find the critical point of the function g(x)=ln(x^(2)+2x+3). Then determine whether the critical point is a local minimum or local maximum.
Find the Critical point(s) of the function f(x, y) = x^2 + y^2 + xy -...
Find the Critical point(s) of the function f(x, y) = x^2 + y^2 + xy - 3x - 5. Then determine whether each critical point is a local maximum, local minimum, or saddle point. Then find the value of the function at the extreme(s).
If f(x,y)=(5∗x3+4∗y3+4∗x∗y+1) find the critical point for f(x,y) x=____ y=____ Is this critical point a local...
If f(x,y)=(5∗x3+4∗y3+4∗x∗y+1) find the critical point for f(x,y) x=____ y=____ Is this critical point a local maximum, local minimum, or saddle point?
Suppose that f(x,y) = x2−xy+y2−3x+3y with −3≤x,y≤3 1. The critical point of f(x,y) is at (a,b)....
Suppose that f(x,y) = x2−xy+y2−3x+3y with −3≤x,y≤3 1. The critical point of f(x,y) is at (a,b). Then a= and b= 2.Absolute minimum of f(x,y) is and absolute maximum is
Find and classify each critical point (as relative maximum, relative minimum, or saddle point) of f(x,y)...
Find and classify each critical point (as relative maximum, relative minimum, or saddle point) of f(x,y) = 2x^3 + 3x^2 + y^1 - 36x + 8y + 1
Examine the function f(x, y) = 2x 2 + 2xy + y 2 + 2x −...
Examine the function f(x, y) = 2x 2 + 2xy + y 2 + 2x − 3 for relative extrema. Use the Second Partials Test to determine whether there is a relative maximum, relative minimum, a saddle point, or insufficient information to determine the nature of the function f(x, y) at the critical point (x0, y0), such that fxx(x0, y0) = −3, fyy(x0, y0) = −8, fxy(x0, y0) = 2.
g(x,y)= 2x^2+3y^2 subject to: 2x+2y<_1
g(x,y)= 2x^2+3y^2 subject to: 2x+2y<_1
Problem 1. (1 point) Find the critical point of the function f(x,y)=−(6x+y2+ln(|x+y|))f(x,y)=−(6x+y2+ln(|x+y|)). c=? Use the Second...
Problem 1. (1 point) Find the critical point of the function f(x,y)=−(6x+y2+ln(|x+y|))f(x,y)=−(6x+y2+ln(|x+y|)). c=? Use the Second Derivative Test to determine whether it is A. a local minimum B. a local maximum C. test fails D. a saddle point