Question

A hemispherical bowl with a radius of 6 feet is full of water. If the density...

A hemispherical bowl with a radius of 6 feet is full of water. If the density of water is 62.5 lb/ft^3 , how much work is required to pump all the water out of the outlet at the top of the tank?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tank shaped like a cone pointing downward has height 9 feet and base radius 3...
A tank shaped like a cone pointing downward has height 9 feet and base radius 3 feet, and is full of water. The weight density of water is 62.4 lb/ft^3. Find the work required to pump all of the water out over the top of the tank.
A hemispherical tank of water (radius 10 ft) is being pumped out. Find the work done...
A hemispherical tank of water (radius 10 ft) is being pumped out. Find the work done in lowering the water level from 2 feet below the top of the tank to 4 feet below the tank given that the pump is placed a) at the top of the tank and b) the pump is placed 3 feet above the top of the tank. Clearly indicate how force and distance are represented and indicate where the 0 position is on the...
A tank is full of water. Find the work required to pump the water out of...
A tank is full of water. Find the work required to pump the water out of the spout. Use the fact that water weighs 62.5 lb/ft3. (Assume a = 6 ft, b = 9 ft, and c = 10 ft.)
Consider a hemispherical tank with a radius of 3 meters that is resting upright on its...
Consider a hemispherical tank with a radius of 3 meters that is resting upright on its curved side. Using 9.8 m/s^2 for the acceleration due to gravity and 1,000 kg/m^3 as the density of water, Set up the integral for the work required to pump the water out of the tank if: (a) the tank is full of water and it is being pumped out of a 1-meter long vertical spout at the top of the tank. (b) the tank...
A thin hemispherical bowl of clear plastic floats on water in a tank. The radius of...
A thin hemispherical bowl of clear plastic floats on water in a tank. The radius of the bowl is 50 cm and the depth of the bowl in water is 10 cm. The depth of the water (n = 1.33) in the tank is h = 590 cm. An object 8.0 cm long is on the bottom of the tank directly below the bowl. The object is viewed from directly above the bowl. Ignore the refractive effects of the plastic....
a hemispherical bowl of radius 0.5m is filled with water of density 997 kg/m^3. calculate the...
a hemispherical bowl of radius 0.5m is filled with water of density 997 kg/m^3. calculate the force exerted on the bowl. the answer is 3840 N. but When I calculate it, I get 815 N. What's wrong?
a circular cone shaped tank that is 10 feet high, is filled to about 2 feet...
a circular cone shaped tank that is 10 feet high, is filled to about 2 feet in height with lb/ft^3 density olive oil. How much work is required to pump the oil to the edge of the tank
Consider the following container. It is a cut cone with a top radius of 7 ft...
Consider the following container. It is a cut cone with a top radius of 7 ft and a bottom radius of 3 ft. It has a height of 12 ft and water (density 62.5 lb/ft^3) is currently in the container to a depth of 5 ft. There is a spout on this container at the top. Write down but DO NOT EVALUATE an integral to find the work necessary to pump all the water in this container up out of...
an inverted right circular gasoline tank of radius 2 ft and height 8ft is buried in...
an inverted right circular gasoline tank of radius 2 ft and height 8ft is buried in the ground so that the circular top is 1 f below the ground (parallel to the ground). Howw much work (in ft-lbs) is required to pump the gasoline occupying the top foot of the tank to aheight 2ft above the ground if the tank id full. (ignore the water the ends in the hose from the pumping process aftertop foot is done being pumped...
Calculate the work (in joules) required to pump all of the water out of a full...
Calculate the work (in joules) required to pump all of the water out of a full tank. The density of water is 1000 kilograms per cubic meter. Assume the tank (b) is shaped like a horizontal cylinder of radius R and height H where the spout is connected directly to the top of the tank.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT