Question

Minimizing Costs A pencil cup with a capacity of 45 in.^3 is to be constructed in...

Minimizing Costs A pencil cup with a capacity of 45 in.^3 is to be constructed in the shape of a rectangular box with a square base and an open top. If the material for the sides costs 27¢/in.^2 and the material for the base costs 90¢/in.^2, what should the dimensions of the cup be to minimize the construction cost? A pencil cup is in the shape of a rectangular box with a square base and an open top.

height

length

width

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A pencil cup with a capacity of 48 in^3 is to be constructed in the shape...
A pencil cup with a capacity of 48 in^3 is to be constructed in the shape of a rectangular box with a square base and an open top. If the material for the sides costs 40¢/in^2 and the material for the base costs 60¢/in.^2, what should the dimensions of the cup be to minimize the construction cost? A pencil cup is in the shape of a rectangular box with a square base and an open top. height ____ in length...
A pencil cup with a capacity of 20 in.3 is to be constructed in the shape...
A pencil cup with a capacity of 20 in.3 is to be constructed in the shape of a rectangular box with a square base and an open top. If the material for the sides costs 10¢/in.2 and the material for the base costs 50¢/in.2, what should the dimensions of the cup be to minimize the construction cost?
A pencil cup with a capacity of 16 in.3 is to be constructed in the shape...
A pencil cup with a capacity of 16 in.3 is to be constructed in the shape of a rectangular box with a square base and an open top. If the material for the sides costs 14¢/in.2 and the material for the base costs 56¢/in.2, what should the dimensions of the cup be to minimize the construction cost?
A 10 ft3 capacity rectangular box with open top is to be constructed so that the...
A 10 ft3 capacity rectangular box with open top is to be constructed so that the length of the base of the box will be twice as long as its width. The material for the bottom of the box costs 20 cents per square foot and the material for the sides of the box costs 10 cents per square foot. Find the dimensions of the least expensive box that can be constructed.
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of...
Minimizing Packaging Costs A rectangular box is to have a square base and a volume of 20 ft3. If the material for the base costs $0.28/ft2, the material for the sides costs $0.10/ft2, and the material for the top costs $0.22/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y. x...
Minimizing Heating and Cooling Costs A building in the shape of a rectangular box is to...
Minimizing Heating and Cooling Costs A building in the shape of a rectangular box is to have a volume of 6,144 ft3 (see the figure). It is estimated that the annual heating and cooling costs will be $2/ft2 for the top, $4/ft2 for the front and back, and $3/ft2 for the sides. Find the dimensions of the building that will result in a minimal annual heating and cooling cost. What is the minimal annual heating and cooling cost? The base...
An open-top rectangular box is being constructed to hold a volume of 300 in3. The base...
An open-top rectangular box is being constructed to hold a volume of 300 in3. The base of the box is made from a material costing 8 cents/in2. The front of the box must be decorated, and will cost 12 cents/in2. The remainder of the sides will cost 2 cents/in2. Find the dimensions that will minimize the cost of constructing this box. Front width: _______ in. Depth: ________ in. Height: ________ in.
A rectangular box with a volume of 272 ft. cubed is to be constructed with a...
A rectangular box with a volume of 272 ft. cubed is to be constructed with a square base and top. The cost per square foot for the bottom is15cents, for the top is10cents, and for the other sides is 2.5 cents. What dimensions will minimize the​ cost? What are the dimensions of the box? The length of on side of the base is ___ The height of the box is___ (Rounds to one decimal place as needed)
A rectangular box is to have a square base and a volume of 16 ft3. If...
A rectangular box is to have a square base and a volume of 16 ft3. If the material for the base costs $0.14/ft2, the material for the sides costs $0.06/ft2, and the material for the top costs $0.10/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost. (Refer to the figure below.) A closed rectangular box has a length of x, a width of x, and a height of y.
A rectangular box is to have a square base and a volume of 45 ft3. If...
A rectangular box is to have a square base and a volume of 45 ft3. If the material for the base costs 14 cents per square foot, material for the top costs 6 cents per square foot, and the material for the sides costs 6 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.