Solve for X, assuming all matrices involved are invertible: ABXA−1B−1 = I + A.
We have ABXA-1 B-1 = I + A.
On multiplying to the right by BA, we get (ABXA-1 B-1) BA = (I+A)BA or, (ABXA-1)(B-1 B)A = BA+ABA
or, (ABXA-1)IA = BA+ABA or, (ABXA-1)A = BA+ABA or, ABX(A-1A) = BA+ABA or, ABXI = BA+ABA or, ABX = BA+ABA.
Now, on multiplying to the left by B-1 A-1, we get (B-1 A-1)ABX = (B-1 A-1)(BA+ABA)
or, B-1 (A-1A)BX = (B-1 A-1)(BA)+ (B-1 A-1)(ABA)
or, B-1 IBX = (B-1 A-1)(BA)+ B-1 (A-1A)BA or, (B-1B)X = (B-1 A-1)(BA)+ B-1 IBA or, IX = (B-1 A-1)(BA)+ B-1 BA
or, X = (B-1 A-1)(BA)+ IA
or, X = (B-1 A-1)(BA)+A.
Get Answers For Free
Most questions answered within 1 hours.