Question

Let f(x,y) = 3x^2y − 2y^2 − 3x^2 − 8y + 2. (i) Find the stationary...

Let f(x,y) = 3x^2y − 2y^2 − 3x^2 − 8y + 2.

(i) Find the stationary points of f.

(ii) For each stationary point P found in (i), determine whether f has a local maximum, a local minimum, or a saddle point at P.

Answer:

(i) (0, −2), (2, 1), (−2, 1)

(ii) (0, −2) loc. max, (± 2, 1) saddle points

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f(x, y) = (2y-x^2)(y-2x^2) a. Show that f(x, y) has a stationary point at (0,...
Let f(x, y) = (2y-x^2)(y-2x^2) a. Show that f(x, y) has a stationary point at (0, 0) and calculate the discriminant at this point. b. Show that along any line through the origin, f(x, y) has a local minimum at (0, 0)
Let f(x,y) = 3x^2 + cos(Pi*y). a) f has a saddle point at (0,k) whenever k...
Let f(x,y) = 3x^2 + cos(Pi*y). a) f has a saddle point at (0,k) whenever k is an odd integer b) f has a saddle point at (0,k) whenever k is an even integer) c) f has a local maximum at (0,k) whenever k is an even integer d) f has a local minimum at (0,k) whenever k is an odd integer.
Find the absolute minimum and absolute maximum of f(x,y)=10−3x+8y on the closed triangular region with vertices...
Find the absolute minimum and absolute maximum of f(x,y)=10−3x+8y on the closed triangular region with vertices (0,0),(8,0) and (8,12). List the minimum/maximum values as well as the point(s) at which they occur. If a min or max occurs at multiple points separate the points with commas.
Find the Critical point(s) of the function f(x, y) = x^2 + y^2 + xy -...
Find the Critical point(s) of the function f(x, y) = x^2 + y^2 + xy - 3x - 5. Then determine whether each critical point is a local maximum, local minimum, or saddle point. Then find the value of the function at the extreme(s).
Find all local maximum or local minimum or saddle point for f(x,y)= 8y^3 + 12x^2 -24xy
Find all local maximum or local minimum or saddle point for f(x,y)= 8y^3 + 12x^2 -24xy
Consider the function f(x,y) = -8x^2-8y^2+x+y Select all that apply: 1. The function has two critical...
Consider the function f(x,y) = -8x^2-8y^2+x+y Select all that apply: 1. The function has two critical points 2. The function has a saddle point 3. The function has a local maximum 4. The function has a local minimum 5. The function has one critical point *Please show your work so I can follow along*
(3)If H(x, y) = x^2 y^4 + x^4 y^2 + 3x^2 y^2 + 1, show that...
(3)If H(x, y) = x^2 y^4 + x^4 y^2 + 3x^2 y^2 + 1, show that H(x, y) ≥ 0 for all (x, y). Hint: find the minimum value of H. (4) Let f(x, y) = (y − x^2 ) (y − 2x^2 ). Show that the origin is a critical point for f which is a saddle point, even though on any line through the origin, f has a local minimum at (0, 0)
Find and classify each critical point (as relative maximum, relative minimum, or saddle point) of f(x,y)...
Find and classify each critical point (as relative maximum, relative minimum, or saddle point) of f(x,y) = 2x^3 + 3x^2 + y^1 - 36x + 8y + 1
Find the area of one loop of the polar curve r=4*sin(3*theta + Pi/3) Let f(x,y) =...
Find the area of one loop of the polar curve r=4*sin(3*theta + Pi/3) Let f(x,y) = 3x^2 + cos(Pi*y). a) f has a saddle point at (0,k) whenever k is an odd integer b) f has a saddle point at (0,k) whenever k is an even integer) c) f has a local maximum at (0,k) whenever k is an even integer d) f has a local minimum at (0,k) whenever k is an odd integer
Given the function f (x, y) = ax^2 2 + 2xy + ay.y 2-ax-ay. Take for...
Given the function f (x, y) = ax^2 2 + 2xy + ay.y 2-ax-ay. Take for a an integer value that is either greater than 1 or less than -1, and then determine the critical point of this function. Then indicate whether it is is a local maximum, a local minimum or a saddle point. Given the function f (x, y) = ax^2 +2 + 2xy + ay^2-2-ax-ay. Take for a an integer value that is either greater than 1...