Question

find the integral of f(x,y,z)=x over the region x^2+y^2=1 and x^2+y^2=9 above the xy plane and...

find the integral of f(x,y,z)=x over the region x^2+y^2=1 and x^2+y^2=9 above the xy plane and below z=x+2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find volume lies below surface z=2x+y and above the region in xy plane bounded by x=0...
find volume lies below surface z=2x+y and above the region in xy plane bounded by x=0 ,y=1 and x=y^1/2
(9) (a)Find the double integral of the function f (x, y) = x + 2y over...
(9) (a)Find the double integral of the function f (x, y) = x + 2y over the region in the plane bounded by the lines x = 0, y = x, and y = 3 − 2x. (b)Find the maximum and minimum values of 2x − 6y + 5 subject to the constraint x^2 + 3(y^2) = 1. (c)Consider the function f(x,y) = x^2 + xy. Find the directional derivative of f at the point (−1, 3) in the direction...
Set up the triple integral, including limits, of the function over the region. f(x, y, z)...
Set up the triple integral, including limits, of the function over the region. f(x, y, z) = sin z, x ≥ 0, y ≥ 0, and below the plane 2x + 2y + z = 2
Compute the surface integral of F(x, y, z) = (y,z,x) over the surface S, where S...
Compute the surface integral of F(x, y, z) = (y,z,x) over the surface S, where S is the portion of the cone x = sqrt(y^2+z^2) (orientation is in the negative x direction) between the planes x = 0, x = 5, and above the xy-plane. PLEASE EXPLAIN
Find the center of mass of region density p(x,y,z)= 1/(25-x^2-y^2) bounded by parabaloid z-25-x^2-y^2 and xy-plane
Find the center of mass of region density p(x,y,z)= 1/(25-x^2-y^2) bounded by parabaloid z-25-x^2-y^2 and xy-plane
consider the region E, which is under the surface z=8-(x^2+y^2) and above the region R in...
consider the region E, which is under the surface z=8-(x^2+y^2) and above the region R in the xy-plane bounded by x^2+y^2=4. a) sketch the solid region E and the shadow it casts in the xy-plane b) find the mass of E if the density is given by δ(x,y,z)=z
Find the average height of the paraboloid z=10x^2 + 7y^2 above the annular region 4<= x^2...
Find the average height of the paraboloid z=10x^2 + 7y^2 above the annular region 4<= x^2 + y^2 <= 9 in the xy-plane
Set up, but do not evaluate, an integral of f(x,y,z) = 20−z over the solid region...
Set up, but do not evaluate, an integral of f(x,y,z) = 20−z over the solid region defined by x^2 +y^2 +z^2 ≤ 25 and z ≥ 3. Write the iterated integral(s) to evaluate this in a coordinate system of your choosing, including the integrand, order of integration, and bounds on the integrals.
Quesiton: Compute the surface integral of f(x,y,z)=x^2 over z=sqrt(x^2+y^2), 0<=z<=1.
Quesiton: Compute the surface integral of f(x,y,z)=x^2 over z=sqrt(x^2+y^2), 0<=z<=1.
Use a triple integral to find the volume of the solid under the surfacez = x^2...
Use a triple integral to find the volume of the solid under the surfacez = x^2 yand above the triangle in the xy-plane with vertices (1.2) , (2,1) and (4, 0). a) Sketch the 2D region of integration in the xy plane b) find the limit of integration for x, y ,z c) solve the integral