Question

Solve the IVP y¨ − 5 y˙ + 4y = e^t , y(0) = 3, y˙(0)...

Solve the IVP y¨ − 5 y˙ + 4y = e^t , y(0) = 3, y˙(0) = 1/3

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
solve y''+4y'+4y=0 y(0)=1, y'(0)=4 IVP
solve y''+4y'+4y=0 y(0)=1, y'(0)=4 IVP
solve the IVP y'' - 4y' - 5y = 6e-x,  y(0)= 1, y'(0) = -2
solve the IVP y'' - 4y' - 5y = 6e-x,  y(0)= 1, y'(0) = -2
Use the definition of the Laplace transform to solve the IVP: 4y''− 4y' + 5y =...
Use the definition of the Laplace transform to solve the IVP: 4y''− 4y' + 5y = δ(t), y(0) = −1, y'(0) = 0.
y'' + 4y' + 5y = δ(t − 2π), y(0) = 0, y'(0) = 0 Solve...
y'' + 4y' + 5y = δ(t − 2π), y(0) = 0, y'(0) = 0 Solve the given IVP using the Laplace Transform. any help greatly appreciated :)
Solve the IVP with Cauchy-Euler ODE: x^2 y''+3xy'+4y=0; y(1)=0, y’(1)=−2
Solve the IVP with Cauchy-Euler ODE: x^2 y''+3xy'+4y=0; y(1)=0, y’(1)=−2
solve the IVP 5/384y''+1.6666y=6sin(8sqrt2 t), y(0)=4, y'(0)=0
solve the IVP 5/384y''+1.6666y=6sin(8sqrt2 t), y(0)=4, y'(0)=0
Use the Laplace transform to solve the IVP: y′(t) +y(t) = cos(t), y(0) = 0.
Use the Laplace transform to solve the IVP: y′(t) +y(t) = cos(t), y(0) = 0.
Solve the equation y''−5y' + 4y = f(t) with f(t) = 1 (0 ≤ t ≤...
Solve the equation y''−5y' + 4y = f(t) with f(t) = 1 (0 ≤ t ≤ 5), f(t) = 0 (t > 5). and y(0) = 0 ,y'(0) = 1
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is...
Use the Laplace transform to solve the following IVP y′′ +2y′ +2y=δ(t−5) ,y(0)=1,y′(0)=2, where δ(t) is the Dirac delta function.
9. Solve the following IVP’s: (a) y'' + 4y = 4 + δ(t − 3π) y(0)...
9. Solve the following IVP’s: (a) y'' + 4y = 4 + δ(t − 3π) y(0) = 0, y'(0) = 1 (b) y'' + 2y' + y = e^t + 2δ(t − 2) y(0) = −1, y'(0) = 2 (c) y'' − 4y = 3δ(t) y(0) = −1, y'(0) = −2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT