Question

A jewelry box with a square base is to be built with silver plated sides, nickel...

A jewelry box with a square base is to be built with silver plated sides, nickel plated bottom and top, and a volume of 28 cm3. If nickel plating costs $1 per cm2 and silver plating costs $12 per cm2, find the dimensions of the box to minimize the cost of the materials. (Use decimal notation. Give your answers to three decimal places.)

Homework Answers

Answer #1

Note: since cost = 4x^2+12(4xh). Then differentiate and find the value of x as explained in the image.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rectangular box is to have a square base and a volume of 48 ft3. If...
A rectangular box is to have a square base and a volume of 48 ft3. If the material for the base costs 4 cents per square foot, material for the top costs 20 cents per square foot, and the material for the sides costs 16 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
A rectangular box is to have a square base and a volume of 45 ft3. If...
A rectangular box is to have a square base and a volume of 45 ft3. If the material for the base costs 14 cents per square foot, material for the top costs 6 cents per square foot, and the material for the sides costs 6 cents per square foot, determine the dimensions of the square base (in feet) that minimize the total cost of materials used in constructing the rectangular box.
A company plans to manufacture a rectangular box with a square base, an open top, and...
A company plans to manufacture a rectangular box with a square base, an open top, and a volume of 404 cm3. The cost of the material for the base is 0.5 cents per square centimeter, and the cost of the material for the sides is 0.1 cents per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing it. What is the minimum cost?
A storage shed is to be built in the shape of a box with a square...
A storage shed is to be built in the shape of a box with a square base. It is to have a volume of 125 cubic feet. The concrete for the base costs ​$8 per square​ foot, the material for the roof costs $7 per square​ foot, and the material for the sides costs ​$7.50 per square foot. Find the dimensions of the most economical shed. The length of one side of the​ shed's base is The height of the...
An open-top box has a square bottom and is made to have a volume of 50in^3....
An open-top box has a square bottom and is made to have a volume of 50in^3. The material for the base costs $10 a sq in and the material for the sides is $6 a sq in. What dimensions minimize cost
A rectangular box with a volume of 272 ft. cubed is to be constructed with a...
A rectangular box with a volume of 272 ft. cubed is to be constructed with a square base and top. The cost per square foot for the bottom is15cents, for the top is10cents, and for the other sides is 2.5 cents. What dimensions will minimize the​ cost? What are the dimensions of the box? The length of on side of the base is ___ The height of the box is___ (Rounds to one decimal place as needed)
A closed box with a square base is to have a volume of 2000in2. The material...
A closed box with a square base is to have a volume of 2000in2. The material for the top and bottom of the box is to cost $6 per in2, and the material for the sides is to cost $3 per in2. If the cost of the material is to be the least, find the dimensions of the box. Prove/justify your answer.
A closed rectangular box is going to be built in such a way that its volume...
A closed rectangular box is going to be built in such a way that its volume corresponds to 6m3. The cost of the material for the top and bottom is $ 20 per square meter. The cost for the sides is $ 10 per square meter. What are the dimensions of the box that produce a minimum cost?
There is an open-topped box that will have 5 sides.. The box to contain a volume...
There is an open-topped box that will have 5 sides.. The box to contain a volume of 6 ft3 and to have a square base. The base needs a stronger material which costs $3 per ft2. For the other sides I’ll use a material that costs $2 per ft2. What are the dimensions of the box that minimize the cost?
A box of volume 36 m3 with square bottom and no top is constructed out of...
A box of volume 36 m3 with square bottom and no top is constructed out of two different materials. The cost of the bottom is $40/m2 and the cost of the sides is $30/m2 . Find the dimensions of the box that minimize total cost. (Let s denote the length of the side of the square bottom of the box and h denote the height of the box.) (s, h) =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT