Question

A tank is is half full of oil that has a density of 900kg/m3. Find the...

A tank is is half full of oil that has a density of 900kg/m3. Find the work W required to pump the oil out of the spout. (Use 9.8 for g and 3.14 for . Round your answer to three significant digits.)

r= 11.4

h= 5.7

Homework Answers

Answer #1

The answer for above problem is explained below.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tank is filled with liquid of density 1000 [kg/m3 ]. Its shape is obtained by...
A tank is filled with liquid of density 1000 [kg/m3 ]. Its shape is obtained by rotating the curve y =√x, 0 ≤ x ≤ 4, around the y-axis. Find the work that is required to pump all the liquid out of the tank, from the top of the tank. All the lengths are in units of meter [m]. Do not forget to use gravitational constant g = 9.8[m/s2 ].
A tank has the shape of a hemisphere (bottom half of the sphere) with radius 6m....
A tank has the shape of a hemisphere (bottom half of the sphere) with radius 6m. It is filled with water to a height of 4m. The spout is located 1m above the tank. Find the work required to pump the water out of the spout.
Consider a hemispherical tank with a radius of 3 meters that is resting upright on its...
Consider a hemispherical tank with a radius of 3 meters that is resting upright on its curved side. Using 9.8 m/s^2 for the acceleration due to gravity and 1,000 kg/m^3 as the density of water, Set up the integral for the work required to pump the water out of the tank if: (a) the tank is full of water and it is being pumped out of a 1-meter long vertical spout at the top of the tank. (b) the tank...
A triangular tank with height 3 meters, width 4 meters and length 8 meters is full...
A triangular tank with height 3 meters, width 4 meters and length 8 meters is full of water. How much work is required to pump the water out through a spout 2.5 meter above the top of the tank? (The density of water is approximately 1000 kg m3 .)
Calculate the work (in joules) required to pump all of the water out of a full...
Calculate the work (in joules) required to pump all of the water out of a full tank. The density of water is 1000 kilograms per cubic meter. Assume the tank (b) is shaped like a horizontal cylinder of radius R and height H where the spout is connected directly to the top of the tank.
A tank is full of water. Find the work required to pump the water out of...
A tank is full of water. Find the work required to pump the water out of the spout. Use the fact that water weighs 62.5 lb/ft3. (Assume a = 6 ft, b = 9 ft, and c = 10 ft.)
Calculate the work (in joules) required to pump all of the water out of a full...
Calculate the work (in joules) required to pump all of the water out of a full tank. The density of water is 1000 kilograms per cubic meter. Assume the tank (a) is shaped like an inverted cone of radius 5 meters and height 10 meters where the spout is connected to a 2 meter tube extending vertically above the tank. (b) is shaped like a horizontal cylinder of radius R and height H where the spout is connected directly to...
You have a spherical water tank that is exactly half-full. In order to empty the tank,...
You have a spherical water tank that is exactly half-full. In order to empty the tank, the water must be sent through a spout at the top that extends 2 meters above the top of the tank. The radius of the tank is 9 meters. How much work is required to empty the tank? Include every step and write your solution out very clearly.
A spherical tank with radius 2m is half full. Set up, but DO NOT evaluate, an...
A spherical tank with radius 2m is half full. Set up, but DO NOT evaluate, an integral that determines the work required to pump the water out of the tank through a valve 1m above the top of the tank.
Problem 18.87 Drops of an oil that has a mass density of 700 kg/m3 are released...
Problem 18.87 Drops of an oil that has a mass density of 700 kg/m3 are released from a broken undersea oil pipe that is 1200 m below the ocean surface. Use 1000 kg/m3 for the mass density of ocean water. Part A If the drops have an average diameter of 100 μm, how long do they take to rise to the surface? Hint: The drops quickly reach terminal speed and experience a viscous drag force of magnitude Fdwo=(0.0200Pa⋅s)Rv, where R...