Question

Evaluate ∫ C 2 xyz d x + x^2 z dy + x^2 y d z...

Evaluate ∫ C 2 xyz d x + x^2 z dy + x^2 y d z over the path

c ( t ) = ( t^2 , sin ⁡ ( π t /4 ) , e^(t^2 − 2t ) for 0 ≤ t ≤ 2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate Integral (subscript c) z dx + y dy − x dz, where the curve C...
Evaluate Integral (subscript c) z dx + y dy − x dz, where the curve C is given by c(t) = t i + sin t j + cost k for 0 ≤ t ≤ π.
Evaluate C (y + 6 sin(x)) dx + (z2 + 2 cos(y)) dy + x3 dz...
Evaluate C (y + 6 sin(x)) dx + (z2 + 2 cos(y)) dy + x3 dz where C is the curve r(t) = sin(t), cos(t), sin(2t) , 0 ≤ t ≤ 2π. (Hint: Observe that C lies on the surface z = 2xy.) C F · dr =
Problem 7. Consider the line integral Z C y sin x dx − cos x dy....
Problem 7. Consider the line integral Z C y sin x dx − cos x dy. a. Evaluate the line integral, assuming C is the line segment from (0, 1) to (π, −1). b. Show that the vector field F = <y sin x, − cos x> is conservative, and find a potential function V (x, y). c. Evaluate the line integral where C is any path from (π, −1) to (0, 1).
Evaluate the line integral, where C is the given curve. xyeyz dy,   C: x = 2t,    y =...
Evaluate the line integral, where C is the given curve. xyeyz dy,   C: x = 2t,    y = 4t2,    z = 3t3,    0 ≤ t ≤ 1 C
Evaluate the line integral, where C is the given curve. xyeyz dy,   C: x = 2t,    y =...
Evaluate the line integral, where C is the given curve. xyeyz dy,   C: x = 2t,    y = 2t2,    z = 3t3,    0 ≤ t ≤ 1 C
1.) Let f ( x , y , z ) = x ^3 + y +...
1.) Let f ( x , y , z ) = x ^3 + y + z + sin ⁡ ( x + z ) + e^( x − y). Determine the line integral of f ( x , y , z ) with respect to arc length over the line segment from (1, 0, 1) to (2, -1, 0) 2.) Letf ( x , y , z ) = x ^3 * y ^2 + y ^3 * z^...
Compute the line integral of f(x, y, z) = x 2 + y 2 − cos(z)...
Compute the line integral of f(x, y, z) = x 2 + y 2 − cos(z) over the following paths: (a) the line segment from (0, 0, 0) to (3, 4, 5) (b) the helical path → r (t) = cos(t) i + sin(t) j + t k from (1, 0, 0) to (1, 0, 2π)
Evaluate double integral Z 2 0 Z 1 y/2 cos(x^2 )dx dy (integral from 0 to...
Evaluate double integral Z 2 0 Z 1 y/2 cos(x^2 )dx dy (integral from 0 to 2)(integral from y/2 to 1) for cos(x^2) dx dy
Evaluate the line integral of " (y^2)dx + (x^2)dy " over the closed curve C which...
Evaluate the line integral of " (y^2)dx + (x^2)dy " over the closed curve C which is the triangle bounded by x = 0, x+y = 1, y = 0.
Evaluate the line integral, where C is the given curve. xyeyz dy,   C: x = 3t,    y =...
Evaluate the line integral, where C is the given curve. xyeyz dy,   C: x = 3t,    y = 2t2,    z = 4t3,    0 ≤ t ≤ 1 C