Question

(a) (3 pts) Show that f(x) = 4x3 on [0,1] is a probability density function. (Hint:...

(a) (3 pts) Show that f(x) = 4x3 on [0,1] is a probability density function. (Hint: Use the two properties of the probability density function).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Consider the function f(x) = x 3 + 7x + 2. (a) (10 pts) Show...
1. Consider the function f(x) = x 3 + 7x + 2. (a) (10 pts) Show that f has an inverse. (Hint: Is f increasing?) (b) (10 pts) Determine the slope of the tangent line to f −1 at (10, 1). (Hint: The derivative of the inverse function can be found using the chain rule.)
The probability density function of X is given by f(x)={a+bx0if 0<x<1otherwise If E(X)=1.5, find a+b. Hint:...
The probability density function of X is given by f(x)={a+bx0if 0<x<1otherwise If E(X)=1.5, find a+b. Hint: For a probability density function f(x), we have ∫∞−∞f(x)dx=1
1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function...
1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function 2. Decide if f(x) = 1/81x3dx on the interval [0, 3] is a probability density function. 3. Find a value for k such that f(x) = kx on the interval [2, 3] is a probability density function. 4. Let f(x) = 1 /2 e -x/2 on the interval [0, ∞). a. Show that f(x) is a probability density function b. . Find P(0 ≤...
A uniform random variable on (0,1), X, has density function f(x) = 1, 0 < x...
A uniform random variable on (0,1), X, has density function f(x) = 1, 0 < x < 1. Let Y = X1 + X2 where X1 and X2 are independent and identically distributed uniform random variables on (0,1). 1) By considering the cumulant generating function of Y , determine the first three cumulants of Y .
Let f: [0,1] -> [0,1] be a continuous function. Show that there exists xsubzero [0,1] such...
Let f: [0,1] -> [0,1] be a continuous function. Show that there exists xsubzero [0,1] such that f(xsubzero)=xsubzero
A joint density function of the continuous random variables x and y is a function f(x,...
A joint density function of the continuous random variables x and y is a function f(x, y) satisfying the following properties. f(x, y) ≥ 0 for all (x, y) ∞ −∞ ∞ f(x, y) dA = 1 −∞ P[(x, y)  R] =    R f(x, y) dA Show that the function is a joint density function and find the required probability. f(x, y) = 1 8 ,   0 ≤ x ≤ 1, 1 ≤ y ≤ 9 0,   elsewhere P(0 ≤...
Let X be a random variable with probability density function given by f(x) = 2(1 −...
Let X be a random variable with probability density function given by f(x) = 2(1 − x), 0 ≤ x ≤ 1,   0, elsewhere. (a) Find the density function of Y = 1 − 2X, and find E[Y ] and Var[Y ] by using the derived density function. (b) Find E[Y ] and Var[Y ] by the properties of the expectation and the varianc
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5...
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5 0 1 < x < infinity elsewhere 2. The probability density function of X is f(x). F(1.5)=___________ f(x) = {(1/2)x^3 - (3/8)x^2 0 0 < x < 2 elsewhere   3. F(x) is the distribution function of X. Find the probability density function of X. Give your answer as a piecewise function. F(x) = {3x^2 - 2x^3 0 0<x<1 elsewhere
Let X be a random variable with density function f(x) = 2 5 x for x...
Let X be a random variable with density function f(x) = 2 5 x for x ∈ [2, 3] and f(x) = 0, otherwise. (a) (6 pts) Compute E[(X − 2)3 ] without attempting to find the density function of Y = (X − 2)3 . (b) (6 pts) Find the density function of Y = (X − 2)3
prove that this function is uniformly continuous on (0,1): f(x) = (x^3 - 1) / (x...
prove that this function is uniformly continuous on (0,1): f(x) = (x^3 - 1) / (x - 1)