Question

solve the ODE solving for the general solutions y''+y'-12y=sin(t)e^(3t)

solve the ODE solving for the general solutions

y''+y'-12y=sin(t)e^(3t)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve the following differential equations 1. cos(t)y' - sin(t)y = t^2 2. y' - 2ty =...
Solve the following differential equations 1. cos(t)y' - sin(t)y = t^2 2. y' - 2ty = t Solve the ODE 3. ty' - y = t^3 e^(3t), for t > 0 Compare the number of solutions of the following three initial value problems for the previous ODE 4. (i) y(1) = 1 (ii) y(0) = 1 (iii) y(0) = 0 Solve the IVP, and find the interval of validity of the solution 5. y' + (cot x)y = 5e^(cos x),...
(a) Solve the differential equations. 4y´´ + 12y´ + 9y= 0 (b) Find the general solution...
(a) Solve the differential equations. 4y´´ + 12y´ + 9y= 0 (b) Find the general solution of the ODE y´´- 5y´+4y=e^4t (c) Solve the following initial value problem: y´´+ y =0, y(0)=2, y´(0)=2
Solve the differential equation y"-4y'-12y=sin(2x)
Solve the differential equation y"-4y'-12y=sin(2x)
The homogeneous solutions to an ODE are sin(2t) and cos(2t). Suppose that the forcing function is...
The homogeneous solutions to an ODE are sin(2t) and cos(2t). Suppose that the forcing function is 1.5 cos(2t) what is an appropriate form of the general solution? y(t)=Acos2t +Bsin2t + C t cos(2t+ᶲ) ,        (b) y(t)=Acos2t +Bsin2t + C cos2t + Dsin2t y(t)=Acos2t +Bsin2t,                                      (d) y(t)=Acos2t +Bsin2t + C cos(2t+ᶲ) What is the total number of linearly independent solutions that the following ODE must have? y" +5y'+6xy=sinx Two       (b) Four                (c) Three              (d) Five
Solve the ODE y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0
Solve the ODE y"+3y'+2y=(e^-t)(sin2t) when y'(0)=y(0)=0
Suppose y(t) is governed by ODE t3y'''(t) + 6t2y''(t) + 4ty'(t) = 0. Solve this ODE...
Suppose y(t) is governed by ODE t3y'''(t) + 6t2y''(t) + 4ty'(t) = 0. Solve this ODE by performing the following procedure: 1) Let x = ln(t) and set y(t) = φ(x) = φ(ln(t)), 2) Use chain rule of differentiation to calculate derivatives y in terms derivatives of φ, 3) by appropriate substitution, construct an ODE governing φ(x) and solve it, 4) use this φ(x) to get back y(t).
Find the general solution to y'' - 4y' + 3y = e^t + 3t^2 - 2t...
Find the general solution to y'' - 4y' + 3y = e^t + 3t^2 - 2t + 3
Determine the general solution of the given differential equation. y(4) + y''' = sin 3t
Determine the general solution of the given differential equation. y(4) + y''' = sin 3t
Solve the second order differential equation y'' + 6y' + 9y = e^(-3t) + t^(3)
Solve the second order differential equation y'' + 6y' + 9y = e^(-3t) + t^(3)
Let y(t) be the solution of the initial-value problem y'= sin(y)e^(y2+1); y(0) = 1 Calculate limt->INF...
Let y(t) be the solution of the initial-value problem y'= sin(y)e^(y2+1); y(0) = 1 Calculate limt->INF y(t). (Hint: do not attempt to solve the ODE). THE ANSWER IS PI. PLEASE EXPLAIN CAUSE IM CONFUSED!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT