Question

Identify any extrema of the function by recognizing its given form or its form after completing...

Identify any extrema of the function by recognizing its given form or its form after completing the square. Verify your results by using the partial derivatives to locate any critical points and test for relative extrema.

f(x, y) = x2 + y2 + 18x − 2y + 1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the absolute extrema of the given function on the indicated closed and bounded set R....
Find the absolute extrema of the given function on the indicated closed and bounded set R. (Order your answers from smallest to largest x, then from smallest to largest y.) f(x, y) = x2 + y2 − 2y + 1  on  R = {(x, y)|x2 + y2 ≤ 81}
Find the extrema (maximum and minimum) of the given function f(x,y) = 3cos(x2 - y2) subject...
Find the extrema (maximum and minimum) of the given function f(x,y) = 3cos(x2 - y2) subject to x2 + y2=4. Thank you!
Use Lagrange multipliers to find all relative extrema of the function subject to the given constraint....
Use Lagrange multipliers to find all relative extrema of the function subject to the given constraint. f(x,y)=x^2+2y^3 constraint: 2x+y^2-8=0
Consider the quadratic function f, given by f(x) = −x2 + 6x−8. (i) Determine if the...
Consider the quadratic function f, given by f(x) = −x2 + 6x−8. (i) Determine if the graph of y = −x2 + 6x − 8 is concave up or concave down, providing a justification with your answer. (ii) Re-write the equation of the quadratic function f, given by f(x) = −x2 +6x−8, in the standard form f(x) = a(x−h)2+k by completing the square. Hence determine the vertex of the graph of y = f(x). (iii) Identify the x-intercepts and y-intercept...
Given f(x,y) = x2−3y2−8x+9y+3xy  for each and any point that is critical, use the second-partial-derivative test to...
Given f(x,y) = x2−3y2−8x+9y+3xy  for each and any point that is critical, use the second-partial-derivative test to determine whether the point is a relative maximum, relative minimum, or a saddle point.
Given the functions f(x,y) = x3 + y3- 3x - 3y First find the coordinates of...
Given the functions f(x,y) = x3 + y3- 3x - 3y First find the coordinates of all the critical points of f(x,y) and then apply the Second Order Partial Derivative Test to locate all relative maxima, relative minima and saddle points of f(x,y). Justify your answers and show your conclusions using an appropriate table. [Hint: The domain of f(x,y) is an open region ]
Given f(x)= x3 - 6x2-15x+30 Determine f ’(x) Define “critical point” of a function. Then determine...
Given f(x)= x3 - 6x2-15x+30 Determine f ’(x) Define “critical point” of a function. Then determine the critical points of f(x). Use the sign of f ’(x) to determine the interval(s) on which the function is increasing and the interval(s) on which it is decreasing. Use the results from (c) to determine the location and values (x and y-values of the relative maxima and the relative minima of f(x). Determine f ’’(x) On which intervals is the graph of f(x)...
question #1: Consider the following function. f(x) = 16 − x2,     x ≤ 0 −7x,     x...
question #1: Consider the following function. f(x) = 16 − x2,     x ≤ 0 −7x,     x > 0 (a) Find the critical numbers of f. (Enter your answers as a comma-separated list.) x = (b) Find the open intervals on which the function is increasing or decreasing. (Enter your answers using interval notation. If an answer does not exist, enter DNE.) increasing     decreasing   question#2: Consider the following function. f(x) = 2x + 1,     x ≤ −1 x2 − 2,     x...
46. Use Newton's Method to approximate the zero(s) of the function. Continue the iterations until two...
46. Use Newton's Method to approximate the zero(s) of the function. Continue the iterations until two successive approximations differ by less than 0.001. Then find the zero(s) to three decimal places using a graphing utility and compare the results. f(x) = 2 − x3 Newton's method:      Graphing utility:      x = x =    48. Find the differential dy of the given function. (Use "dx" for dx.) y = x+1/3x-5 dy = 49.Find the differential dy of the given function. y...
You are given that the function f(x,y)=8x2+y2+2x2y+3 has first partials fx(x,y)=16x+4xy and fy(x,y)=2y+2x2, and has second...
You are given that the function f(x,y)=8x2+y2+2x2y+3 has first partials fx(x,y)=16x+4xy and fy(x,y)=2y+2x2, and has second partials fxx(x,y)=16+4y, fxy(x,y)=4x and fyy(x,y)=2. Consider the point (0,0). Which one of the following statements is true? A. (0,0) is not a critical point of f(x,y). B. f(x,y) has a saddle point at (0,0). C. f(x,y) has a local maximum at (0,0). D. f(x,y) has a local minimum at (0,0). E. The second derivative test provides no information about the behaviour of f(x,y) at...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT