Question

Suppose the velocity of a car (in mph) driving out of Houston at t (in miles)...

Suppose the velocity of a car (in mph) driving out of Houston at t (in miles) is given by v(t) = t^2 + 2t − 35 where the domain is 0 ≤ t ≤ 10. (a)

(a)Find the time interval (within the domain) where the velocity is negative either algebraically or by sketching the graph. For your final answer, you can use the inequality notation such as 0 ≤ t ≤ 10 or an interval notation such as [0, 10].

(b) (4 points) Based on your information from Part (a), find the total distance in miles the car traveled.

Homework Answers

Answer #1

if satisfied with the explanation, please rate it up..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at...
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at time t=0 are v(0)=0 and S(0)=2. 1. Find a formula for the velocity v(t) at time t. 2. Find a formula for the position S(t) at time t. 3. Find the total distance traveled by the particle on the interval [0,3].
) The velocity function v(t) = −2t + 6, on the interval [1,5] is given for...
) The velocity function v(t) = −2t + 6, on the interval [1,5] is given for a particle moving along a line. Find the distance traveled
You are in a car (car A) traveling at a constant speed of 72 mph (miles...
You are in a car (car A) traveling at a constant speed of 72 mph (miles per hour) when another car (car B) 25 meters ahead of your swerves into your lane. Car B is traveling at 100 km/hr. In order to avoid colliding with car B, determine the minimum acceleration of your car (A). a) For both cars, sketch acceleration- and velocity-versus-time graphs. (Be sure to label them.) When sketching a graph, you should show the rough behavior (i.e.,...
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = t3 − 9t2 + 15t (a) Find the velocity at time t. v(t) =      (b) What is the velocity after 4 s? v(4) =  ft/s (c) When is the particle at rest? t =  s (smaller value) t =  s (larger value) (d) When is the particle moving in the positive direction? (Enter your answer...
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = t3 − 15t2 + 72t (a) Find the velocity at time t. v(t) = (b) What is the velocity after 5 s? v(5) = (c) When is the particle at rest? t =   s (smaller value) t =   s (larger value) When is the particle moving in the positive direction? (Enter your answer in interval...
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = t3 − 15t2 + 72t (a) Find the velocity at time t. v(t) = (b) What is the velocity after 5 s? v(5) = (c) When is the particle at rest? t =   s (smaller value) t =   s (larger value) When is the particle moving in the positive direction? (Enter your answer in interval...
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. (If an answer does not exist, enter DNE.) f(t) = t3 − 8t2 + 23t (a) Find the velocity at time t. v(t) =    ft/s (b) What is the velocity after 1 second? v(1) =   ft/s (c) When is the particle at rest? (d) When is the particle moving in the positive direction? (Enter your...
A particle moves along a line with velocity v(t)=(3 - t)(2+t), find the distance traveled during...
A particle moves along a line with velocity v(t)=(3 - t)(2+t), find the distance traveled during the time interval [0, 1].
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. (If an answer does not exist, enter DNE.) f(t) = t3 − 8t2 + 27t (a) Find the velocity at time t. v(t) = ft/s (b) What is the velocity after 1 second? v(1) = ft/s (c) When is the particle at rest? (d) When is the particle moving in the positive direction? (Enter your...
Practice Derivatives and integrals. A particle’s velocity is described by the function v = ( t^2...
Practice Derivatives and integrals. A particle’s velocity is described by the function v = ( t^2 – 7t + 10) m/s, where t is in s. a) Graph the velocity function for t in the interval 0s-6s. b) At what times does the particle reach its turning points? c) Find and graph the position function x (t). d) Find and graph the acceleration function a(t). e) What is the particle’s acceleration at each of the turning points?