Question

How to set up intergration of this problem --finding the volume of the sphere x^2 +...

How to set up intergration of this problem --finding the volume of the sphere x^2 + y^2 +z^2 ≤ 1 that lies in the 1st OCTANT,

x>0, y>0, and z>0. Give example of using double integral setup --- IF POSSIBLE -- show set up using 3 integration.

Please explain how to set up integrals in CARTESIAN coordinates.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the volume of the solid using triple integrals. The solid region Q cut from the...
Find the volume of the solid using triple integrals. The solid region Q cut from the sphere x^2+y^2+z^2=4 by the cylinder r=2sinϑ. Find and sketch the solid and the region of integration R. Setup the triple integral in Cartesian coordinates. Setup the triple integral in Spherical coordinates. Setup the triple integral in Cylindrical coordinates. Evaluate the iterated integral
1- Set up the triple integral for the volume of the sphere Q=8 in rectangular coordinates....
1- Set up the triple integral for the volume of the sphere Q=8 in rectangular coordinates. 2- Find the volume of the indicated region. the solid cut from the first octant by the surface z= 64 - x^2 -y 3- Write an iterated triple integral in the order dz dy dx for the volume of the region in the first octant enclosed by the cylinder x^2+y^2=16 and the plane z=10
Set up a double integral in rectangular coordinates for the volume bounded by the cylinders x^2+y^2=1...
Set up a double integral in rectangular coordinates for the volume bounded by the cylinders x^2+y^2=1 and y^2+z^x=1 and evaluate that double integral to find the volume.
a)   Sketch the solid in the first octant bounded by: z = x^2 + y^2 and...
a)   Sketch the solid in the first octant bounded by: z = x^2 + y^2 and x^2 + y^2 = 1, b)   Given the volume density which is proportional to the distance from the xz-plane, set up integrals               for finding the mass of the solid using cylindrical coordinates, and spherical coordinates. c)   Evaluate one of these to find the mass.
Set up (Do Not Evaluate) a triple integral that yields the volume of the solid that...
Set up (Do Not Evaluate) a triple integral that yields the volume of the solid that is below        the sphere x^2+y^2+z^2=8 and above the cone z^2=1/3(x^2+y^2) a) Rectangular coordinates        b) Cylindrical coordinates        c)   Spherical coordinates
The domain E of R^3 located inside the sphere x^2 + y^2 + z^2 = 12...
The domain E of R^3 located inside the sphere x^2 + y^2 + z^2 = 12 and above half-cone z = sqrroot(( x^2 + y^2) / 3) (a) Represent the domain E. (b) Calculate the volume of solid E with a triple integral in Cartesian coordinates. (c) Recalculate the volume of solid E using the cylindrical coordinates.
Consider the sphere x^2 + y^2 + z^2 = 81 determine the double integral, in polar...
Consider the sphere x^2 + y^2 + z^2 = 81 determine the double integral, in polar coordinates, needed to calculate the volume of the sphere. Calculate the integral.
Let E be the solid that lies in the first octant, inside the sphere x2 +...
Let E be the solid that lies in the first octant, inside the sphere x2 + y2 + z2 = 10. Express the volume of E as a triple integral in cylindrical coordinates (r, θ, z), and also as a triple integral in spherical coordinates (ρ, θ, φ). You do not need to evaluate either integral; just set them up.
Set up an iterated integral for the surface area of the part of the plane x...
Set up an iterated integral for the surface area of the part of the plane x + y + z = 6 that lies in the first octant.
1a. Using rectangular coordinates, set up iterated integral that shows the volume of the solid bounded...
1a. Using rectangular coordinates, set up iterated integral that shows the volume of the solid bounded by surfaces z= x^2+y^2+3, z=0, and x^2+y^2=1 1b. Evaluate iterated integral in 1a by converting to polar coordinates 1c. Use Lagrange multipliers to minimize f(x,y) = 3x+ y+ 10 with constraint (x^2)y = 6
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT