Question

a box with a square base and open top must have a volume of 62.5 cm^3...

a box with a square base and open top must have a volume of 62.5 cm^3 . find the dimension of the box that minimize the amount of materials used.

Homework Answers

Answer #1

Please like the answer. if you have any doubts please feel free to ask in comment section below

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A box with a square base and an open top must have a volume of 864...
A box with a square base and an open top must have a volume of 864 cm^3. Find the dimensions of the box that minimize the amount of material used.  
A box with a square base and open top must have a volume of 202612 cm3....
A box with a square base and open top must have a volume of 202612 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A box with a square base and open top must have a volume of 296352 cm3....
A box with a square base and open top must have a volume of 296352 cm3. We wish to find the dimensions of the box that minimize the amount of material used. (Round your answer to the nearest tenthousandths if necessary.) Length = Width = Height =
A box with a square base and open top must have a volume of 108000 cm^3....
A box with a square base and open top must have a volume of 108000 cm^3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only x, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of x.] Simplify your formula as much as possible....
A box with a square base and open top must have a volume of 157216 cm3cm3....
A box with a square base and open top must have a volume of 157216 cm3cm3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only xx, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of xx.] Simplify your formula as much as possible....
A box with a square base and open top must have a volume of 364500 cm3cm3....
A box with a square base and open top must have a volume of 364500 cm3cm3. We wish to find the dimensions of the box that minimize the amount of material used. First, find a formula for the surface area of the box in terms of only xx, the length of one side of the square base. [Hint: use the volume formula to express the height of the box in terms of xx.] Simplify your formula as much as possible....
A box with square base and open top is to have a volume of 10?3 ....
A box with square base and open top is to have a volume of 10?3 . Material for the base costs $10 per square meter and material for the sides costs $8 per square meter. Determine the dimensions of the cheapest such container. Use the first or second derivative test to verify that your answer is a minimum.
An open-top box has a square bottom and is made to have a volume of 50in^3....
An open-top box has a square bottom and is made to have a volume of 50in^3. The material for the base costs $10 a sq in and the material for the sides is $6 a sq in. What dimensions minimize cost
An open-topped box is to have a square base and a volume of 10 ?3. The...
An open-topped box is to have a square base and a volume of 10 ?3. The cost per square meter of material is $5 for the bottom and $2 for the four sides. Let ? be the length of the base of the box and ℎ be the height of the box. Let ? be the total cost of material required to make the box. a. Express ? as a function of ? and find its domain. b. Find the...
1- An open box with a square base is to have a volume of 10 ft3....
1- An open box with a square base is to have a volume of 10 ft3. (a) Find a function that models the surface area A of the box in terms of the length of one side of the base x. (b) Find the box dimensions that minimize the amount of material used. (Round your answers to two decimal places.) 2- Find the dimensions that give the largest area for the rectangle. Its base is on the x-axis and its...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT