Question

Let f(x) = 2/ x and a = 1. (a) Find the third order Taylor polynomial,...

Let f(x) = 2/ x and a = 1. (a) Find the third order Taylor polynomial, T3(x), that approximates f near a. (b) Estimate the largest that |f(x)−T3(x)| can be on the interval [0.5,1.5] by using Taylor’s inequality for the remainder.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Use a definition of a Taylor polynomial to find the Taylor polynomial T2(x) for f(x)...
1. Use a definition of a Taylor polynomial to find the Taylor polynomial T2(x) for f(x) = x^3/2 centered at a = 4. We use T1(3.98) to approximate (3.98)^3/2. Apply Taylor’s inequality on the interval [3.98,4.02] to answer the following question: can we guarantee that the error |(3.98)^3/2 −T1(3.98)| of our approximation is less than 0.0001 ?
1. This question is on the Taylor polynomial. (a) Find the Taylor Polynomial p3(x) for f(x)=...
1. This question is on the Taylor polynomial. (a) Find the Taylor Polynomial p3(x) for f(x)= e^ x sin(x) about the point a = 0. (b) Bound the error |f(x) − p3(x)| using the Taylor Remainder R3(x) on [−π/4, π/4]. (c) Let pn(x) be the Taylor Polynomial of degree n of f(x) = cos(x) about a = 0. How large should n be so that |f(x) − pn(x)| < 10^−5 for −π/4 ≤ x ≤ π/4 ?
Let f(x) =(x)^3/2 (a) Find the second Taylor polynomial T2(x) based at b = 1. x3....
Let f(x) =(x)^3/2 (a) Find the second Taylor polynomial T2(x) based at b = 1. x3. (b) Find an upper bound for |T2(x)−f(x)| on the interval [1−a,1+a]. Assume 0 < a < 1. Your answer should be in terms of a. (c) Find a value of a such that 0 < a < 1 and |T2(x)−f(x)| ≤ 0.004 for all x in [1−a,1+a].
(1 point) Find the degree 3 Taylor polynomial T3(x) centered at a=4 of the function f(x)=(7x−20)4/3....
(1 point) Find the degree 3 Taylor polynomial T3(x) centered at a=4 of the function f(x)=(7x−20)4/3. T3(x)= ? True False Cannot be determined The function f(x)=(7x−20)4/3 equals its third degree Taylor polynomial T3(x) centered at a=4. Hint: Graph both of them. If it looks like they are equal, then do the algebra.
(1 point) Find the degree 3 Taylor polynomial T3(x) of function f(x)=(7x+67)^(5/4) at a=2 T3(x)=?
(1 point) Find the degree 3 Taylor polynomial T3(x) of function f(x)=(7x+67)^(5/4) at a=2 T3(x)=?
Find the degree 3 Taylor polynomial T3(x) of function f(x)=(7x−5)^3/2 at a=2. T3(x)=
Find the degree 3 Taylor polynomial T3(x) of function f(x)=(7x−5)^3/2 at a=2. T3(x)=
Let f(x) = 1 + x − x2 +ex-1. (a) Find the second Taylor polynomial T2(x)...
Let f(x) = 1 + x − x2 +ex-1. (a) Find the second Taylor polynomial T2(x) for f(x) based at b = 1. b) Find (and justify) an error bound for |f(x) − T2(x)| on the interval [0.9, 1.1]. The f(x) - T2(x) is absolute value. Please answer both questions cause it will be hard to post them separately.
find the 6th order taylor polynomial for f(x) = xsin(x^2) centered at a=0.
find the 6th order taylor polynomial for f(x) = xsin(x^2) centered at a=0.
The second-order Taylor polynomial fort he functions f(x)=√1+x about X0= is P2=1+(x/2)-(x^2/2) using the given Taylor...
The second-order Taylor polynomial fort he functions f(x)=√1+x about X0= is P2=1+(x/2)-(x^2/2) using the given Taylor polynomial approximate f(0.05) with 2 digits rounding and the find the relative error of the obtained value (Note f(0.05=1.0247). write down the answer and all the calculations steps in the text filed.
Using the Taylor Remainder Theorem, what is the upper bound on | f (x) − T3(x)|,...
Using the Taylor Remainder Theorem, what is the upper bound on | f (x) − T3(x)|, for x ∈ [4, 10] if  f (x)  =  2 sin (x) and T3(x) is the Taylor polynomial centered on 7.