Question

Linear Algebra-- Subspaces of Vector Spaces Determine whether the set W is a subspace of R^3...

Linear Algebra-- Subspaces of Vector Spaces

Determine whether the set W is a subspace of R^3 with the standard operations. Justify your answer.

(a): W={(0,x2,x3): x2 and x3 are real numbers}

(b): W={(a, a-3b, b): a and b are real numbers}

Homework Answers

Answer #1

Solution:

is nonempty.

Let    where   are real numbers

, since   are real numbers .

is closed under addition.

Let   .

Then   , since are real numbers .

is closed under scalar multiplication.

Hence,   is a subspace of .

---------------------------------------------------------------------------------------------------------------------------------

is a nonempty.

Let   ,   where are real numbers.

, since   are real numbers.

is closed under addition.

Let  .

Then   , since   are real numbers.

is closed under scalar multiplication.

Hence,   is a subspace of .

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q 1 Determine whether the following are real vector spaces. a) The set C with the...
Q 1 Determine whether the following are real vector spaces. a) The set C with the usual addition of complex numbers and multiplication by R ⊂ C. b) The set R2 with the two operations + and · defined by (x1, y1) + (x2, y2) = (x1 + x2 + 1, y1 + y2 + 1), r · (x1, y1) = (rx1, ry1)
Determine whether S = {(x1, x2, x3) | x1 = 3x2 − x3} is a subspace...
Determine whether S = {(x1, x2, x3) | x1 = 3x2 − x3} is a subspace of R 3 . Justify your answer.
Determine if W is a subspace of R^3 under the usual addition and scalar multiplication. Either...
Determine if W is a subspace of R^3 under the usual addition and scalar multiplication. Either show algebraically that it is or show how it isn't algebraically. W= {(x1, x2, x3) ∈ R^3 x1 = x2 and x2 = 2x3 }
Determine if the given set V is a subspace of the vector space W, where a)...
Determine if the given set V is a subspace of the vector space W, where a) V={polynomials of degree at most n with p(0)=0} and W= {polynomials of degree at most n} b) V={all diagonal n x n matrices with real entries} and W=all n x n matrices with real entries *Can you please show each step and little bit of an explanation on how you got the answer, struggling to learn this concept?*
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2,...
Determine whether the given set ?S is a subspace of the vector space ?V. A. ?=?2V=P2, and ?S is the subset of ?2P2 consisting of all polynomials of the form ?(?)=?2+?.p(x)=x2+c. B. ?=?5(?)V=C5(I), and ?S is the subset of ?V consisting of those functions satisfying the differential equation ?(5)=0.y(5)=0. C. ?V is the vector space of all real-valued functions defined on the interval [?,?][a,b], and ?S is the subset of ?V consisting of those functions satisfying ?(?)=?(?).f(a)=f(b). D. ?=?3(?)V=C3(I), and...
Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T...
Let (V, |· |v ) and (W, |· |w ) be normed vector spaces. Let T : V → W be linear map. The kernel of T, denoted ker(T), is defined to be the set ker(T) = {v ∈ V : T(v) = 0}. Then ker(T) is a linear subspace of V . Let W be a closed subspace of V with W not equal to V . Prove that W is nowhere dense in V .
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that U is a subspace of V, and let T(U) be the set of all vectors w in W such that T(v) = w for some v in V. Show that T(U) is a subspace of W. b. Suppose that dimension of U is n. Show that the dimension of T(U) is less than or equal to n.
Suppose V and W are two vector spaces. We can make the set V × W...
Suppose V and W are two vector spaces. We can make the set V × W = {(α, β)|α ∈ V,β ∈ W} into a vector space as follows: (α1,β1)+(α2,β2)=(α1 + α2,β1 + β2) c(α1,β1)=(cα1, cβ1) You can assume the axioms of a vector space hold for V × W (A) If V and W are finite dimensional, what is the dimension of V × W? Prove your answer. Now suppose W1 and W2 are two subspaces of V ....
We have learned that we can consider spaces of matrices, polynomials or functions as vector spaces....
We have learned that we can consider spaces of matrices, polynomials or functions as vector spaces. For the following examples, use the definition of subspace to determine whether the set in question is a subspace or not (for the given vector space), and why. 1. The set M1 of 2×2 matrices with real entries such that all entries of their diagonal are equal. That is, all 2 × 2 matrices of the form: A = a b c a 2....
Prove that the singleton set {0} is a vector subspace of the space P4(R) of all...
Prove that the singleton set {0} is a vector subspace of the space P4(R) of all polynomials of degree at most 3 with real coefficients.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT