Question

Use Green’s theorem to evaluate the integral: ∫(-x^2y)dx +(xy^2)dy where C is the boundary of the...

Use Green’s theorem to evaluate the integral: ∫(-x^2y)dx +(xy^2)dy where C is the boundary of the region enclosed by y= sqrt(9 − x^2) and the x-axis, traversed in the counterclockwise direction.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Green’s Theorem to evaluate the integral H C x ln ydx where C is the...
Use Green’s Theorem to evaluate the integral H C x ln ydx where C is the positively oriented boundary curve of the region bounded by x = 1, x = 2, y = e^x and y = e^(x^2) .
Use Green's Theorem to evaluate the line integral along the given positively oriented curve.    C...
Use Green's Theorem to evaluate the line integral along the given positively oriented curve.    C 3y + 7e x dx + 8x + 9 cos(y2) dy C is the boundary of the region enclosed by the parabolas y = x2 and x = y2
Use Green's Theorem to evaluate the line integral along the given positively oriented curve. C 3y...
Use Green's Theorem to evaluate the line integral along the given positively oriented curve. C 3y + 5e x dx + 10x + 9 cos(y2) dy C is the boundary of the region enclosed by the parabolas y = x2 and x = y2
Use Green's Theorem to evaluate the line integral along the given positively oriented curve.    C...
Use Green's Theorem to evaluate the line integral along the given positively oriented curve.    C 3y + 7e x dx + 8x + 3 cos(y2) dy C is the boundary of the region enclosed by the parabolas y = x2 and x = y2
Evaluate ∮C(x^3+xy)dx+(cos(y)+x2)dy∮C(x^3+xy)dx+(cos(y)+x^2)dy where C is the positively oriented boundary of the region bounded by  C:0≤x^2+y^2≤16, x≥0,y≥0C:0≤x^2+y^2≤16,x≥0,y≥0
Evaluate ∮C(x^3+xy)dx+(cos(y)+x2)dy∮C(x^3+xy)dx+(cos(y)+x^2)dy where C is the positively oriented boundary of the region bounded by  C:0≤x^2+y^2≤16, x≥0,y≥0C:0≤x^2+y^2≤16,x≥0,y≥0
Evaluate the line integral by the two following methods. xy dx + x2y3 dy C is...
Evaluate the line integral by the two following methods. xy dx + x2y3 dy C is counterclockwise around the triangle with vertices (0, 0), (1, 0), and (1, 2) (a) directly (b) using Green's Theorem
Evaluate the line integral by the two following methods. (xy dx + x2 dy) C is...
Evaluate the line integral by the two following methods. (xy dx + x2 dy) C is counterclockwise around the rectangle with vertices (0, 0), (2, 0), (2, 1), (0, 1) (a) directly (b) using Green's Theorem
2. Use Green’s Theorem to evaluate R C F · Tds, where C is the square...
2. Use Green’s Theorem to evaluate R C F · Tds, where C is the square with vertices (0,0),(1,0),(1,1) and (0,1) in the xy plane, oriented counter-clockwise, and F(x,y) = hx 3 ,xyi. (Please give a numerical answer here.)
Use Stokes' Theorem to evaluate the integral ∮CF⋅dr=∮C8z^2dx+8xdy+2y^3dz where C is the circle x^2+y^2=9 in the...
Use Stokes' Theorem to evaluate the integral ∮CF⋅dr=∮C8z^2dx+8xdy+2y^3dz where C is the circle x^2+y^2=9 in the plane z=0 .
Evaluate the line integral: (x^2 + y^2) dx + (5xy) dy on the edge of the...
Evaluate the line integral: (x^2 + y^2) dx + (5xy) dy on the edge of the circle: x^2 + y^2 = 4. USING GREEN'S THEOREM.