Question

Find fxx, fxy, fyy when f(x, y) = xe^(x^2−xy+y^2)

Answer #1

Consider the function f(x,y) = xe^((x^2)-(y^2))
(a) Find f(1,−1), fx(1,−1), fy(1,−1). Use these values to find a
linear approximation for f (1.1, −0.9).
(b) Find fxx(1, −1), fxy(1, −1), fyy(1, −1). Use these values to
find a quadratic approximation for f(1.1,−0.9).

fxx, fxy, fyx, and fyy
f(x, y) = y (ln x)

(1 point)
Find all the first and second order partial derivatives of
f(x,y)=7sin(2x+y)−2cos(x−y)
A. ∂f∂x=fx=∂f∂x=fx=
B. ∂f∂y=fy=∂f∂y=fy=
C. ∂2f∂x2=fxx=∂2f∂x2=fxx=
D. ∂2f∂y2=fyy=∂2f∂y2=fyy=
E. ∂2f∂x∂y=fyx=∂2f∂x∂y=fyx=
F. ∂2f∂y∂x=fxy=∂2f∂y∂x=fxy=

Let f (x, y) =
xe xy. Find the maximum rate
of change of f at the point (3, -2).

part 1)
Find the partial derivatives of the function
f(x,y)=xsin(7x^6y):
fx(x,y)=
fy(x,y)=
part 2)
Find the partial derivatives of the function
f(x,y)=x^6y^6/x^2+y^2
fx(x,y)=
fy(x,y)=
part 3)
Find all first- and second-order partial derivatives of the
function f(x,y)=2x^2y^2−2x^2+5y
fx(x,y)=
fy(x,y)=
fxx(x,y)=
fxy(x,y)=
fyy(x,y)=
part 4)
Find all first- and second-order partial derivatives of the
function f(x,y)=9ye^(3x)
fx(x,y)=
fy(x,y)=
fxx(x,y)=
fxy(x,y)=
fyy(x,y)=
part 5)
For the function given below, find the numbers (x,y) such that
fx(x,y)=0 and fy(x,y)=0
f(x,y)=6x^2+23y^2+23xy+4x−2
Answer: x= and...

Consider the following function. H(x, y) = ln(5x^2 + 8y^2)
(a) Find fxx(2,3) .
(b) Find fyy(2,3) .
(c) Find fxy(2,3) .

let
f(x,y) = xe^(xy)
Find the directional derivative of f at point (2,0) in the
direction of vector <-6,8>. Find the maximum rate of change
of f at point (2,0) and the direction in which it occurs.

Let f(x,y) = xe^sin(x^2y+xy^2) /(x^2 + x^2y^2 + y^4)^3 . Compute
∂f ∂x (√2,0) pointwise.

Please find ALL second partial derivatives of f: fx, fy, fz,
fxx, fyy, fzz, fxy, fxz, and fyz
For ?(?, ?, ?) = (?^?)(?^?)(?^?)
THANK YOU

Given w=f(x,y,z)
List all of the second and third derivatives. How many unique
second derivatives? How many unique third derivatives?
Example: If z=f(x,y) , then z has 3 unique derivatives.
fxx, fxy. fyy

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 7 minutes ago

asked 11 minutes ago

asked 14 minutes ago

asked 15 minutes ago

asked 15 minutes ago

asked 17 minutes ago

asked 17 minutes ago

asked 18 minutes ago

asked 26 minutes ago

asked 27 minutes ago

asked 34 minutes ago

asked 35 minutes ago