Question

Determine whether the Mean Value theorem can be applied to f on the closed interval [a,...

Determine whether the Mean Value theorem can be applied to f on the closed interval

[a, b].

(Select all that apply.)

f(x) =

8 − x

,    [−17, 8]

Yes, the Mean Value Theorem can be applied.

No, because f is not continuous on the closed interval [a, b].

No, because f is not differentiable in the open interval (a, b).

None of the above.



If the Mean Value Theorem can be applied, find all values of c in the open interval

(a, b)

such that

f '(c) =

f(b) − f(a)
b − a

.

(Enter your answers as a comma-separated list. If the Mean Value Theorem cannot be applied, enter NA.)

c =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the Mean Value theorem can be applied to f on the closed interval [a,...
Determine whether the Mean Value theorem can be applied to f on the closed interval [a, b]. (Select all that apply.) f (x) = x7, [0,1] Yes, the Mean Value Theorem can be applied. No, f is not continuous on [a, b]. No, f is not differentiable on (a, b). None of the above. If the Mean Value Theorem can be applied, find all values of c in the open interval (a, b) such that f ‘(c) = f (b)...
Determine whether Rolle's Theorem can be applied to f on the closed interval [a, b]. (Select...
Determine whether Rolle's Theorem can be applied to f on the closed interval [a, b]. (Select all that apply.) f(x) = cos x,    [π, 3π] Yes. No, because f is not continuous on the closed interval [a, b]. No, because f is not differentiable in the open interval (a, b). No, because f(a) ≠ f(b). If Rolle's Theorem can be applied, find all values of c in the open interval (a, b) such that f '(c) = 0. (Enter your answers...
Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x)...
Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = x3 + x − 9,    [0, 2] Yes, f is continuous on [0, 2] and differentiable on (0, 2) since polynomials are continuous and differentiable on .No, f is not continuous on [0, 2].    No, f is continuous on [0, 2] but not differentiable on (0, 2).Yes, it does not matter if f is continuous or differentiable; every function satisfies the Mean Value Theorem.There is...
Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x)...
Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = 3x2 + 3x + 6, [−1, 1] No, f is continuous on [−1, 1] but not differentiable on (−1, 1). There is not enough information to verify if this function satisfies the Mean Value Theorem.     Yes, it does not matter if f is continuous or differentiable; every function satisfies the Mean Value Theorem. No, f is not continuous on [−1, 1].Yes, f is...
1. Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval?...
1. Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = x3 + x − 5,    [0, 2] a) No, f is continuous on [0, 2] but not differentiable on (0, 2). b) Yes, it does not matter if f is continuous or differentiable; every function satisfies the Mean Value Theorem.     c) There is not enough information to verify if this function satisfies the Mean Value Theorem. d) Yes, f is continuous on [0,...
1aDoes the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x)...
1aDoes the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = 4x2 + 3x + 1,    [−1, 1] a.No, f is continuous on [−1, 1] but not differentiable on (−1, 1). b.Yes, it does not matter if f is continuous or differentiable; every function satisfies the Mean Value Theorem.     c.Yes, f is continuous on [−1, 1] and differentiable on (−1, 1) since polynomials are continuous and differentiable on . d.No, f is not continuous on...
Determine whether the Mean Value Theorem can be applied to ?(?) = ?^3 − 3? +...
Determine whether the Mean Value Theorem can be applied to ?(?) = ?^3 − 3? + 2 on the closed interval [−2,2]. If the Mean Value Theorem can be applied, find all values of ?? in the open interval (−2,2) such that ?′ (?) = ?(2) − ?(−2) /2 − (−2) If the Mean Value Theorem cannot be applied, explain why not.
# 12 In Exercises 9–12, determine whether Rolle’s Theorem can be applied to f on the...
# 12 In Exercises 9–12, determine whether Rolle’s Theorem can be applied to f on the closed interval [a, b]. If Rolle’s Theorem can be applied, find all values of c in the open interval (a, b) such that f ′(c) = 0. If Rolle’s Theorem cannot be applied, explain why not. 12. f (x) = sin 2x, [−π, π]
Determine whether Rolle’s Theorem can be applied to f on the given interval. If Rolle’s Theorem...
Determine whether Rolle’s Theorem can be applied to f on the given interval. If Rolle’s Theorem can be applied, find all the values of c in the interval (a, b) such that f 0 (c) = 0. If Rolle’s Theorem cannot be applied, explain why. h(x) = x 2 − 2x/ x + 2 on [−1,6]
A function f(x) and interval [a,b] are given. Check if the Mean Value Theorem can be...
A function f(x) and interval [a,b] are given. Check if the Mean Value Theorem can be applied to f on [a,b]. If so, find all values c in [a,b] guaranteed by the Mean Value Theorem Note, if the Mean Value Theorem does not apply, enter DNE for the c value. f(x)=−3x2+6x+6 [4,6]