Question

For each of the following sets S, find sup(S) and inf(S) if they exist: (a) {x...

For each of the following sets S, find sup(S) and inf(S) if they exist:

(a) {x ∈ R| x2 < 100}

(b) {-3/n | n is a counting number}

(c) {.9, .99, .999, .9999, .99999, …}

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose S and T are nonempty sets of real numbers such that for each x ∈...
Suppose S and T are nonempty sets of real numbers such that for each x ∈ s and y ∈ T we have x<y. a) Prove that sup S and int T exist b) Let M = sup S and N= inf T. Prove that M<=N
Suppose that f(a) =f(b) and inf {f(x) :x∈[a, b]}< α <sup{f(x) :x∈[a, b]}.Prove that there exist...
Suppose that f(a) =f(b) and inf {f(x) :x∈[a, b]}< α <sup{f(x) :x∈[a, b]}.Prove that there exist c, d∈[a, b] with (c Not equal d) such that f(c) =α=f(d)
Please answer Problems 1 and 2 thoroughly. Problem 1: Let X be a set. Define a...
Please answer Problems 1 and 2 thoroughly. Problem 1: Let X be a set. Define a partial ordering ≤ on P(X) by A ≤ B if and only if A ⊆ B. We stated the following two facts in class. In this exercise you are asked to give a formal proof of each: (a) (1 point) If A, B ∈ P(X), then sup{A, B} exists, and sup{A, B} = A ∪ B. (b) (1 point) If A, B ∈ P(X),...
Is there a set A ⊆ R with the following property? In each case give an...
Is there a set A ⊆ R with the following property? In each case give an example, or a rigorous proof that it does not exist. d) Every real number is both a lower and an upper bound for A. (e) A is non-empty and 2inf(A) < a < 1 sup(A) for every a ∈ A.2 (f) A is non-empty and (inf(A),sup(A)) ⊆ [a+ 1,b− 1] for some a,b ∈ A and n > 1000.
Let S and T be nonempty subsets of R with the following property: s ≤ t...
Let S and T be nonempty subsets of R with the following property: s ≤ t for all s ∈ S and t ∈ T. (a) Show that S is bounded above and T is bounded below. (b) Prove supS ≤ inf T . (c) Given an example of such sets S and T where S ∩ T is nonempty. (d) Give an example of sets S and T where supS = infT and S ∩T is the empty set....
For each of the following sets, determine whether they are countable or uncountable (explain your reasoning)....
For each of the following sets, determine whether they are countable or uncountable (explain your reasoning). For countable sets, provide some explicit counting scheme and list the first 20 elements according to your scheme. (a) The set [0, 1]R × [0, 1]R = {(x, y) | x, y ∈ R, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. (b) The set [0, 1]Q × [0, 1]Q = {(x, y) | x, y ∈ Q, 0 ≤ x ≤...
1. Write the following sets in list form. (For example, {x | x ∈N,1 ≤ x...
1. Write the following sets in list form. (For example, {x | x ∈N,1 ≤ x < 6} would be {1,2,3,4,5}.) (a) {a | a ∈Z,a2 ≤ 1}. (b) {b2 | b ∈Z,−2 ≤ b ≤ 2} (c) {c | c2 −4c−5 = 0}. (d) {d | d ∈R,d2 < 0}. 2. Let S be the set {1,2,{1,3},{2}}. Answer true or false: (a) 1 ∈ S. (b) {2}⊆ S. (c) 3 ∈ S. (d) {1,3}∈ S. (e) {1,2}∈ S (f)...
A. Let p and r be real numbers, with p < r. Using the axioms of...
A. Let p and r be real numbers, with p < r. Using the axioms of the real number system, prove there exists a real number q so that p < q < r. B. Let f: R→R be a polynomial function of even degree and let A={f(x)|x ∈R} be the range of f. Define f such that it has at least two terms. 1. Using the properties and definitions of the real number system, and in particular the definition...
Find the LUB and GLB of the following sets: (i) {x | x = 2^(−p)+3^(−q )for...
Find the LUB and GLB of the following sets: (i) {x | x = 2^(−p)+3^(−q )for some p,q ∈ N} (ii) {x ∈ R | 3x^(2)−4x < 1} (iii) the set of all real numbers between 0 and 1 whose decimal expression contains no nines
. Do the following problems: a. Find the sets A and B, if A – B...
. Do the following problems: a. Find the sets A and B, if A – B = {1, 5, 7, 8}, B – A = {2, 10} and A ꓵ B = {3, 6, 9}. b. Draw a Venn Diagram for the Symmetric Difference of the sets A and B. c. Find and list all the partitions of S = {a, b, c, d, e}.