Suppose that it costs c(x) = 156.66x^2 + 13315.79x + 50600.00 dollars to produce (x) boats and that a price per unit of p(x) = -266.32x + 25300.00 is needed to sell all x units.
a.) Find the revenue function R(x) =
b.) Find the profit function P(x) =
c.) Find the exact cost on the 11th boat exact cost =
d.) Find the marginal profit if x=10
Marginal profit =
Cost function : c(x) = 156.66x2 + 13315.79x + 50600.00
Price function : p(x) = -266.32x + 25300.00
(a) Revenue function : R(x) = x*p(x) => -266.32x2 + 25300x
(b) P(x) => R(x) - C(x)
P(x) => (-266.32x2 + 25300x) - (156.66x2 + 13315.79x + 50600)
P(x) => - 422.98x2 + 11984.21x - 50600
(c) c(x) = 156.66x2 + 13315.79x + 50600
Exact cost of 11th boat => c(11) - c(10)
C(11) => 156.66*112 + 13315.79*11 + 50600 => 216029.55
C(10) => 156.66*102 + 13315.79*10 + 50600 => 199423.9
Exact Cost of producing 11th Unit : 16605.65
(d) Marginal Profit => P'(x) => - 845.96x + 11984.21
At x = 10,
P'(10) => - 845.96*10 + 11984.21
P'(10) => 3524.61
Get Answers For Free
Most questions answered within 1 hours.