Question

. Find the flux of the vector field F~ (x, y, z) = <y,-x,z> over a...

. Find the flux of the vector field F~ (x, y, z) = <y,-x,z> over a surface with downward orientation, whose parametric equation is given by r(s, t) = <2s, 2t, 5 − s 2 − t 2 > with s^2 + t^2 ≤ 1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the flux of the vector field F (x, y, z) =< y, x, e^xz >...
Find the flux of the vector field F (x, y, z) =< y, x, e^xz > outward from the z−axis and across the surface S, where S is the portion of x^2 + y^2 = 9 with x ≥ 0, y ≥ 0 and −3 ≤ z ≤ 3.
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = −xi − yj + z3k, S is the part of the cone z = x2 + y2 between the planes z = 1 and z = 2 with downward orientation
Find the flux of the vector field F(x, y, z) = x, y, z through the...
Find the flux of the vector field F(x, y, z) = x, y, z through the portion of the parabaloid z = 16 - x^2-y^2  above the plane ? = 7 with upward pointing normal.
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 4zk, S is the hemisphere x^2 + y2^ + z^2 = 4, z ≥ 0, oriented downward
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = y i − x j + z2 k S is the helicoid (with upward orientation) with vector equation r(u, v) = u cos v i + u sin v j + v k, 0 ≤ u ≤ 5, 0...
Find the flux of the vector field  F  =  x i  +  e6x j  +  z ...
Find the flux of the vector field  F  =  x i  +  e6x j  +  z k  through the surface S given by that portion of the plane  6x + y + 3z  =  9  in the first octant, oriented upward. PLEASE EXPLAIN STEPS. Thank you.
Evaluate the surface integral S F · dS for the given vector field F and the...
Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = yi − xj + 2zk, S is the hemisphere x2 + y2 + z2 = 4, z ≥ 0, oriented downward
Set up a double integral to find the flux of the vector field F = <−x,...
Set up a double integral to find the flux of the vector field F = <−x, −y, z^3 > through the surface S, where S is the part of the cone z = sqrt( x^2 + y^2) between z = 1 and z = 3. You do not have to evaluate the double integral.
Evaluate the surface integral    S F · dS for the given vector field F and...
Evaluate the surface integral    S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xy i + yz j + zx k S is the part of the paraboloid z = 2 − x2 − y2 that lies above the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and...
compute the flux of the vector field F through the parameterized surface S. F= zk and...
compute the flux of the vector field F through the parameterized surface S. F= zk and S is oriented upward and given, for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, by x = s + t, y = s – t, z = s2 + t2. the answer should be 4/3.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT