If W is a subspace of Rn with an orthonormal basis u1, u2, . . . , uk, if x ∈ Rn, and if
projW (x) = (x • u1)u1 + (x • u2)u2 + · · · + (x • uk)uk,
then x − projW (x) is orthogonal to every element of W.
(Please show that x − projW (x) is orthogonal to each uj for 1 ≤ j ≤ k)
u,x are vectors.
Let W be a subspace of Rn with an orthonormal basis u1, u2, . . . , uk. Let x ∈ Rn .Now, since { u1, u2, . . . , uk } is an orthonormal basis for W, hence ui.uj = 0 if i ≠ j. and ui.ui= 1 for each 1 ≤ i ≤ k .
Further, since proj W (x) = x- (x . u1)u1 + (x . u2)u2 + · · · + (x . uk)uk, hence x − proj W (x) = x- (x . u1)u1 + (x . u2)u2 + · · · +(x . uk)uk so that (x − proj W (x)). ui = (x- (x • u1)u1+(x • u2)u2 + · · · + (x . uk)uk) . ui = x.ui – ((x . u1)u1 + (x . u2)u2 + · · · + (x . uk)uk).ui = x.ui – [ (x . u1)u1.ui + (x . u2)u2.ui +…+ (x . uk)uk.ui ] = x.ui – (x.ui)(ui.ui) (as ui. uj = 0 if i ≠ j )= x.ui – (x.ui) ( as ui.ui = 1 for each 1 ≤ i ≤ k since all the ui s are orthonormal vectors) .
Thus, (x − proj W (x)).ui = 0 for each i , 1 ≤ i ≤ k. Hence x − proj W (x) is orthogonal to each uj for 1 ≤ j ≤ k.
Get Answers For Free
Most questions answered within 1 hours.