Question

Apply the Root Test to determine convergence or divergence, or state that the Root Test is...

Apply the Root Test to determine convergence or divergence, or state that the Root Test is inconclusive.

from n=1 to infinity (3n-1/4n+3)^(2n)

Calculate lim n→∞ n cube root of the absolute value of an

What can you say about the series using the Root Test?

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

Homework Answers

Answer #1

Root test helps us to determine the convergence or divergence of series.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the ratio test to determine convergence or divergence. If the ratio test is inconclusive, use...
Use the ratio test to determine convergence or divergence. If the ratio test is inconclusive, use another method to determine convergence or divergence. ∞ (−1)n(n!)2 / (7n)! n = 1 Its the series from 1 to infinity of (-1)^n times (n!)^2 divided by (7n)!
Determine whether the following series is absolutely convergent, conditionally convergent, or divergent. State the name of...
Determine whether the following series is absolutely convergent, conditionally convergent, or divergent. State the name of the test you apply, and show that the series satisfies all hypotheses of the test. Show All Work.  
Test the series for convergence or divergence. ∞ en n2 n = 1 convergent or divergent    
Test the series for convergence or divergence. ∞ en n2 n = 1 convergent or divergent    
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from...
Use the RATIO test to determine whether the series is convergent or divergent. a) sigma from n=1 to infinity of (1/n!) b) sigma from n=1 to infinity of (2n)!/(3n) Use the ROOT test to determine whether the series converges or diverges. a) sigma from n=1 to infinity of    (tan-1(n))-n b) sigma from n=1 to infinity of ((-2n)/(n+1))5n For each series, use and state any appropriate tests to decide if it converges or diverges. Be sure to verify all necessary...
determine whether the alternating series ∑ (1 to ^ infinity) (-1)^(n+1) 3^n / (n +1)! is...
determine whether the alternating series ∑ (1 to ^ infinity) (-1)^(n+1) 3^n / (n +1)! is absolutely convergent, conditionally convergent or divergent.
Determine whether the given series are absolutely convergent, conditionally convergent or divergent: a.) sigma ∞to n=0...
Determine whether the given series are absolutely convergent, conditionally convergent or divergent: a.) sigma ∞to n=0 (−3)n\(2n + 1)! b.) sigma ∞ ton=1 (2n)!\(n!)2
Determine whether the given series is convergent or divergent. Show you work and state the theorem/test...
Determine whether the given series is convergent or divergent. Show you work and state the theorem/test you use. Σ(-1)^n (sqrt(n))/(2n+3) n=1 and upper infinity
for the following series state whether the divergence test applies either state that lim n-> infinity...
for the following series state whether the divergence test applies either state that lim n-> infinity does not exist, or find n-> infinity approaches If test does not apply, state why 147. n=tan (n)
1. Test the series below for convergence using the Root Test. ∞∑n=1 (4n/10n+1)^n The limit of...
1. Test the series below for convergence using the Root Test. ∞∑n=1 (4n/10n+1)^n The limit of the root test simplifies to lim n→∞ |f(n)| where f(n)= The limit is:     Based on this, the series Diverges Converges 2. We want to use the Alternating Series Test to determine if the series: ∞∑k=4 (−1)^k+2 k^2/√k^5+3 converges or diverges. We can conclude that: The Alternating Series Test does not apply because the terms of the series do not alternate. The Alternating Series Test...
Test the series for convergence using the Alternating Series Test: X∞ m=2 (−1)^m/ (m 2^m). If...
Test the series for convergence using the Alternating Series Test: X∞ m=2 (−1)^m/ (m 2^m). If convergent, determine whether this series converges absolutely or conditionally
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT