Question

Let C be the curve parametrized by r(t)=(t2+2)i+(1+t)j+2t^2k, with 0≤t≤. Consider the conservative vector field F=yz2i+xz2j+2xyzk,...

Let C be the curve parametrized by r(t)=(t2+2)i+(1+t)j+2t^2k, with 0≤t≤. Consider the conservative vector field F=yz2i+xz2j+2xyzk, Calculate ∫CF⋅dr

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the vector field →F=〈3x+7y,7x+5y〉F→=〈3x+7y,7x+5y〉 Is this vector field Conservative? yes or no If so: Find...
Consider the vector field →F=〈3x+7y,7x+5y〉F→=〈3x+7y,7x+5y〉 Is this vector field Conservative? yes or no If so: Find a function ff so that →F=∇fF→=∇f f(x,y) =_____ + K Use your answer to evaluate ∫C→F⋅d→r∫CF→⋅dr→ along the curve C: →r(t)=t2→i+t3→j,  0≤t≤3r→(t)=t2i→+t3j→,  0≤t≤3
Let C be a closed curve parametrized by r(t) = sin ti+cos tj with 0 ≤...
Let C be a closed curve parametrized by r(t) = sin ti+cos tj with 0 ≤ t ≤ 2π. Let F = yi − xj be a vector field. (a) Evaluate the line integral xyds. C (b) Find the circulation of F over C. (c) Find the flux of F over C.
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3...
6. Given vector function r(t) = t2 − 2t, 1 + 3t, 1 3 t 3 + 1 2 t 2 i (a) Find r 0 (t) (b) Find the unit tangent vector to the space curve of r(t) at t = 3. (c) Find the vector equation of the tangent line to the curve at t = 3
Find T, N, and B for the given space curve. r(t) = (t2-9)i + (2t-9)j +...
Find T, N, and B for the given space curve. r(t) = (t2-9)i + (2t-9)j + 4k
Consider the curve r(t) = cost(t)i + sin(t)j + (2/3)t2/3k Find: a. the length of the...
Consider the curve r(t) = cost(t)i + sin(t)j + (2/3)t2/3k Find: a. the length of the curve from t = 0 to t = 2pi. b. the equation of the tangent line at the point t = 0. c. the speed of the point moving along the curve at the point t = 2pi
1. (a) Determine whether or not F is a conservative vector field. If it is, find...
1. (a) Determine whether or not F is a conservative vector field. If it is, find the potential function for F. (b) Evaluate R C1 F · dr and R C2 F · dr where C1 is the straight line path from (0, −1) to (3, 0), while C2 is the union of two straight line paths: first piece from (0, −1) to (0, 0) and then second piece from (0, 0) to (3, 0). (When applicable, use the Fundamental...
(1 point) If C is the curve given by r(t)=(1+5sint)i+(1+2sin2t)j+(1+3sin3t)k, 0≤t≤π2 and F is the radial...
(1 point) If C is the curve given by r(t)=(1+5sint)i+(1+2sin2t)j+(1+3sin3t)k, 0≤t≤π2 and F is the radial vector field F(x,y,z)=xi+yj+zk, compute the work done by F on a particle moving along C.
Consider the vector field F = ( 2 x e y − 3 ) i +...
Consider the vector field F = ( 2 x e y − 3 ) i + ( x 2 e y + 2 y ) j , (a) Find all potential functions f such that F = ∇ f . (b) Use (a) to evaluate ∫ C F ⋅ d r , where C is the curve r ( t ) = 〈 t , t 2 〉 , 1 ≤ t ≤ 2 .
Let C ⊂R3 be the parametrized curve X(t) = (√2t, (2/3)t^(3/2), (2/3)t^(3/2) ), t ∈ [0,1]....
Let C ⊂R3 be the parametrized curve X(t) = (√2t, (2/3)t^(3/2), (2/3)t^(3/2) ), t ∈ [0,1]. (1) Compute the total length of C. (2) Compute the curvature of C.
Let C be the plane curve determined by the function r(t)=(3-t^2)i+(2t)j where -2<=t<=2. -Find T(t), T'(t),...
Let C be the plane curve determined by the function r(t)=(3-t^2)i+(2t)j where -2<=t<=2. -Find T(t), T'(t), the magnitude of T'(t), and N(t). Please show work, Thank you!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT