Question

Construct the Taylor series of f(x) = sin(x) centered at π. Determine how many terms are...

Construct the Taylor series of f(x) = sin(x) centered at π. Determine how many terms are needed to approximate sin(3) within 10^-9. Sum that many terms to make the approximation and compare with the true (calculator) value of sin(3).

Homework Answers

Answer #1

A thumbs up is appreciated.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the Taylor series for f(x) =xsin(3x) centered at a=π/3 and Find the radius of convergence...
Find the Taylor series for f(x) =xsin(3x) centered at a=π/3 and Find the radius of convergence of the series you found
Find the Taylor series for f(x) centered at the given value of a. [Assume that f...
Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.] f(x) = sin(x),    a = pi/2
Find the first three non-Zero terms in the Taylor series centered at 0 for the function....
Find the first three non-Zero terms in the Taylor series centered at 0 for the function. f(x)=sin(3x)
Consider the Taylor Series for f(x) = 1/ x^2 centered at x = -1  ...
Consider the Taylor Series for f(x) = 1/ x^2 centered at x = -1           a.) Express this Taylor Series as a Power Series using summation notation. b.) Determine the interval of convergence for this Taylor Series.
Use the definition of Taylor series to find the first five terms of f(x)=lnx centered at...
Use the definition of Taylor series to find the first five terms of f(x)=lnx centered at a=2. simplify all coefficients
Calculus, Taylor series Consider the function f(x) = sin(x) x . 1. Compute limx→0 f(x) using...
Calculus, Taylor series Consider the function f(x) = sin(x) x . 1. Compute limx→0 f(x) using l’Hˆopital’s rule. 2. Use Taylor’s remainder theorem to get the same result: (a) Write down P1(x), the first-order Taylor polynomial for sin(x) centered at a = 0. (b) Write down an upper bound on the absolute value of the remainder R1(x) = sin(x) − P1(x), using your knowledge about the derivatives of sin(x). (c) Express f(x) as f(x) = P1(x) x + R1(x) x...
Find the Taylor series for f ( x ) centered at the given value of a...
Find the Taylor series for f ( x ) centered at the given value of a . (Assume that f has a power series expansion. Do not show that R n ( x ) → 0 . f ( x ) = ln x , a = 5 f(x)=∞∑n =?
Known f (x) = sin (2x) a. Find the Taylor series expansion around x = pi...
Known f (x) = sin (2x) a. Find the Taylor series expansion around x = pi / 2, up to 5 terms only. b. Determine Maclaurin's series expansion, up to 4 terms only
Find the Taylor series for f(x) centered at the given value of a. [Assume that f...
Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.] f(x) = xcos(x),    a = pi
Find the Taylor series for f(x) centered at the given value of a. [Assume that f...
Find the Taylor series for f(x) centered at the given value of a. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.] f(x) = 2x − 4x3,    a = −2