Question

Consider the set V = (x,y) x,y ∈ R with the following two operations: • Addition:...

Consider the set V = (x,y) x,y ∈ R with the following two operations: • Addition: (x1,y1)+(x2,y2)=(x1 +x2 +1, y1 +y2 +1) • Scalarmultiplication:a(x,y)=(ax+a−1, ay+a−1). Prove or disprove: With these operations, V is a vector space over R

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the set with the definition of addition of vectors and scalar multiplication is a...
Determine whether the set with the definition of addition of vectors and scalar multiplication is a vector space. If it is, demonstrate algebraically that it satisfies the 8 vector axioms. If it's not, identify and show algebraically every axioms which is violated. Assume the usual addition and scalar multiplication if it's not defined. V = R^2 , < X1 , X2 > + < Y1 , Y2 > = < X1 + X2 , Y1 +Y2> c< X1 , X2...
Q 1 Determine whether the following are real vector spaces. a) The set C with the...
Q 1 Determine whether the following are real vector spaces. a) The set C with the usual addition of complex numbers and multiplication by R ⊂ C. b) The set R2 with the two operations + and · defined by (x1, y1) + (x2, y2) = (x1 + x2 + 1, y1 + y2 + 1), r · (x1, y1) = (rx1, ry1)
Determine if completeness and transitivity are satisfied for the following preferences defined on x = (x1,...
Determine if completeness and transitivity are satisfied for the following preferences defined on x = (x1, x2) and y = (y1, y2). (Hints: 1- You have to use z = (z1, z2) to prove or disprove transitivity. 2- You can disprove by a counter example) — x ≽y iff x1 > y1 or x1 = y1 and x2 > y2.
Determine if completeness and transitivity are satisfied for the following preferences defined on x = (x1,...
Determine if completeness and transitivity are satisfied for the following preferences defined on x = (x1, x2) and y = (y1, y2). (Hints: 1- You have to use z = (z1, z2) to prove or disprove transitivity. 2- You can disprove by a counter example) — x ≽y iff x1 > y1 or x1 = y1 and x2 > y2.
Determine if completeness and transitivity are satisfied for the following preferences defined on x = (x1,...
Determine if completeness and transitivity are satisfied for the following preferences defined on x = (x1, x2) and y = (y1, y2). (Hints: 1- You have to use z = (z1, z2) to prove or disprove transitivity. 2- You can disprove by a counter example) — x ≽y iff x1 > y1 or x1 = y1 and x2 > y2.
Determine if completeness and transitivity are satisfied for the following preferences defined on x = (x1,...
Determine if completeness and transitivity are satisfied for the following preferences defined on x = (x1, x2) and y = (y1, y2). x ≽ y iff x1 > y1 or x1 = y1 and x2 > y2. (Hints: 1- You have to use z = (z1, z2) to prove or disprove transitivity. 2- You can disprove by a counter example)
Let V=R2 with the standard scalar multiplication and nonstandard addition given as follows: (x1, y1)⊕(x2, y2)...
Let V=R2 with the standard scalar multiplication and nonstandard addition given as follows: (x1, y1)⊕(x2, y2) := (x1x2, y1+y2). Show that (V,⊕, .) is not a vector space.
Are the following vector space and why? 1.The set V of all ordered pairs (x, y)...
Are the following vector space and why? 1.The set V of all ordered pairs (x, y) with the addition of R2, but scalar multiplication a(x, y) = (x, y) for all a in R. 2. The set V of all 2 × 2 matrices whose entries sum to 0; operations of M22.
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
Prove or disprove: GL2(R), the set of invertible 2x2 matrices, with operations of matrix addition and...
Prove or disprove: GL2(R), the set of invertible 2x2 matrices, with operations of matrix addition and matrix multiplication is a ring. Prove or disprove: (Z5,+, .), the set of invertible 2x2 matrices, with operations of matrix addition and matrix multiplication is a ring.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT